STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
carACarbamoyl-phosphate synthase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the CarA family. (374 aa)    
Predicted Functional Partners:
carB
Carbamoyl phosphate synthase large subunit; Four CarB-CarA dimers form the carbamoyl phosphate synthetase holoenzyme that catalyzes the production of carbamoyl phosphate; CarB is responsible for the amidotransferase activity; Derived by automated computational analysis using gene prediction method: Protein Homology.
 0.999
purF
Amidophosphoribosyltransferase; Catalyzes the formation of phosphoribosylamine from phosphoribosylpyrophosphate (PRPP) and glutamine; In the C-terminal section; belongs to the purine/pyrimidine phosphoribosyltransferase family.
 
 
 0.977
purL
Phosphoribosylformylglycinamidine synthase; Phosphoribosylformylglycinamidine synthase involved in the purines biosynthetic pathway. Catalyzes the ATP-dependent conversion of formylglycinamide ribonucleotide (FGAR) and glutamine to yield formylglycinamidine ribonucleotide (FGAM) and glutamate.
 
  
 0.955
pyrD
Dihydroorotate dehydrogenase; Catalyzes the conversion of dihydroorotate to orotate with quinone as electron acceptor; Belongs to the dihydroorotate dehydrogenase family. Type 2 subfamily.
 
  
 0.945
gltB
Catalyzes the formation of glutamate from glutamine and alpha-ketoglutarate; Derived by automated computational analysis using gene prediction method: Protein Homology.
    
  0.945
glnA
Forms a homododecamer; forms glutamine from ammonia and glutamate with the conversion of ATP to ADP and phosphate; also functions in the assimilation of ammonia; highly regulated protein controlled by the addition/removal of adenylyl groups by adenylyltransferase from specific tyrosine residues; addition of adenylyl groups results in inactivation of the enzyme; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
 
 0.929
glmS
Glucosamine--fructose-6-phosphate aminotransferase; Catalyzes the first step in hexosamine metabolism, converting fructose-6P into glucosamine-6P using glutamine as a nitrogen source.
 
  
 0.927
AJC45151.1
Glutamine synthetase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the glutamine synthetase family.
  
 
 0.918
AJC45153.1
Gamma-glutamylputrescine synthetase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the glutamine synthetase family.
  
 
 0.918
pyrE
Orotate phosphoribosyltransferase; Catalyzes the transfer of a ribosyl phosphate group from 5- phosphoribose 1-diphosphate to orotate, leading to the formation of orotidine monophosphate (OMP).
 
  
 0.917
Your Current Organism:
Xanthomonas sacchari
NCBI taxonomy Id: 56458
Other names: CFBP 4641, ICMP 16916, LMG 471, LMG:471, X. sacchari
Server load: low (22%) [HD]