STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
cysJSulfite reductase subunit alpha; Component of the sulfite reductase complex that catalyzes the 6-electron reduction of sulfite to sulfide. This is one of several activities required for the biosynthesis of L-cysteine from sulfate. The flavoprotein component catalyzes the electron flow from NADPH -> FAD -> FMN to the hemoprotein component. Belongs to the NADPH-dependent sulphite reductase flavoprotein subunit CysJ family. In the N-terminal section; belongs to the flavodoxin family. (599 aa)    
Predicted Functional Partners:
cysI
Sulfite reductase subunit beta; Component of the sulfite reductase complex that catalyzes the 6-electron reduction of sulfite to sulfide. This is one of several activities required for the biosynthesis of L-cysteine from sulfate. Belongs to the nitrite and sulfite reductase 4Fe-4S domain family.
 0.999
cysH
Phosphoadenosine phosphosulfate reductase; Reduction of activated sulfate into sulfite. Belongs to the PAPS reductase family. CysH subfamily.
 
 
 0.998
AKL35173.1
Cysteine synthase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the cysteine synthase/cystathionine beta- synthase family.
  
 
 0.972
AKL37782.1
Cysteine synthase; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
 
 0.950
cysC
Adenylylsulfate kinase; Catalyzes the synthesis of activated sulfate.
 
 
 0.949
AKL37138.1
Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology.
   
 
 0.945
metH
B12-dependent methionine synthase; Catalyzes the transfer of a methyl group from methyl- cobalamin to homocysteine, yielding enzyme-bound cob(I)alamin and methionine. Subsequently, remethylates the cofactor using methyltetrahydrofolate.
  
 0.922
cysA_1
Sulfate/thiosulfate transporter subunit; Part of the ABC transporter complex CysAWTP involved in sulfate/thiosulfate import. Responsible for energy coupling to the transport system.
  
  
 0.921
sseA
3-mercaptopyruvate sulfurtransferase; Catalyzes the transfer of a sulfur ion to cyanide or to other thiol compounds; Derived by automated computational analysis using gene prediction method: Protein Homology.
    
 0.920
metB
Catalyzes the formation of cystathionine from L-cysteine and O-succinyl-L-homoserine; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
 0.919
Your Current Organism:
Klebsiella oxytoca
NCBI taxonomy Id: 571
Other names: ATCC 13182, Bacillus oxytocus perniciosus, CCUG 15717, CIP 103434, DSM 5175, IAM 14201, K. oxytoca, Klebsiella sp. CECRI-24/07, Klebsiella sp. MN9SED2, LMG 3055, LMG:3055, NBRC 102593, NBRC 105695, NCTC 13727, strain 479-2
Server load: low (14%) [HD]