STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
AKU15798.1Threonine aldolase; Derived by automated computational analysis using gene prediction method: Protein Homology. (360 aa)    
Predicted Functional Partners:
gcvP
Glycine dehydrogenase; The glycine cleavage system catalyzes the degradation of glycine. The P protein binds the alpha-amino group of glycine through its pyridoxal phosphate cofactor; CO(2) is released and the remaining methylamine moiety is then transferred to the lipoamide cofactor of the H protein; Belongs to the GcvP family.
    
 0.971
AKU17536.1
Threonine synthase; Catalyzes the gamma-elimination of phosphate from L- phosphohomoserine and the beta-addition of water to produce L- threonine.
  
 0.948
glyA
Serine hydroxymethyltransferase; Catalyzes the reversible interconversion of serine and glycine with tetrahydrofolate (THF) serving as the one-carbon carrier. This reaction serves as the major source of one-carbon groups required for the biosynthesis of purines, thymidylate, methionine, and other important biomolecules. Also exhibits THF-independent aldolase activity toward beta-hydroxyamino acids, producing glycine and aldehydes, via a retro-aldol mechanism.
   
 0.925
AKU18751.1
Threonine dehydratase; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
 
 0.918
kbl
2-amino-3-ketobutyrate CoA ligase; Catalyzes the cleavage of 2-amino-3-ketobutyrate to glycine and acetyl-CoA.
  
 
 0.916
ilvA
Threonine dehydratase; Catalyzes the anaerobic formation of alpha-ketobutyrate and ammonia from threonine in a two-step reaction. The first step involved a dehydration of threonine and a production of enamine intermediates (aminocrotonate), which tautomerizes to its imine form (iminobutyrate). Both intermediates are unstable and short-lived. The second step is the nonenzymatic hydrolysis of the enamine/imine intermediates to form 2- ketobutyrate and free ammonia. In the low water environment of the cell, the second step is accelerated by RidA.
   
 
 0.915
tdh
L-threonine 3-dehydrogenase; Catalyzes the NAD(+)-dependent oxidation of L-threonine to 2- amino-3-ketobutyrate; Belongs to the zinc-containing alcohol dehydrogenase family.
     
  0.900
AKU15795.1
Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
   
 0.839
AKU15796.1
Short-chain dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
     0.781
AKU16758.1
Glutamate synthase; Derived by automated computational analysis using gene prediction method: Protein Homology.
     
 0.738
Your Current Organism:
Luteipulveratus mongoliensis
NCBI taxonomy Id: 571913
Other names: Dermacoccaceae bacterium MN07-A0370, L. mongoliensis, Luteipulveratus mongoliensis Ara et al. 2010, NBRC 105296, VTCC D9-09, strain MN07-A0370
Server load: low (20%) [HD]