STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
AKU19085.1Catalyzes the interconversion of ribose 5-phosphate to ribulose 5-phosphate; enzyme from E. coli shows allose 6-phosphate isomerase activity; Derived by automated computational analysis using gene prediction method: Protein Homology. (155 aa)    
Predicted Functional Partners:
AKU16734.1
Ribulose-phosphate 3-epimerase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the ribulose-phosphate 3-epimerase family.
 
 
 0.945
tal
Transaldolase; Transaldolase is important for the balance of metabolites in the pentose-phosphate pathway; Belongs to the transaldolase family. Type 2 subfamily.
 
  
 0.932
AKU16812.1
Transketolase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the transketolase family.
  
 
 0.932
upp
Uracil phosphoribosyltransferase; Catalyzes the conversion of uracil and 5-phospho-alpha-D- ribose 1-diphosphate (PRPP) to UMP and diphosphate.
 
  
 0.921
glyA
Serine hydroxymethyltransferase; Catalyzes the reversible interconversion of serine and glycine with tetrahydrofolate (THF) serving as the one-carbon carrier. This reaction serves as the major source of one-carbon groups required for the biosynthesis of purines, thymidylate, methionine, and other important biomolecules. Also exhibits THF-independent aldolase activity toward beta-hydroxyamino acids, producing glycine and aldehydes, via a retro-aldol mechanism.
 
    0.919
prs
Ribose-phosphate pyrophosphokinase; Involved in the biosynthesis of the central metabolite phospho-alpha-D-ribosyl-1-pyrophosphate (PRPP) via the transfer of pyrophosphoryl group from ATP to 1-hydroxyl of ribose-5-phosphate (Rib- 5-P); Belongs to the ribose-phosphate pyrophosphokinase family. Class I subfamily.
    
 0.918
AKU16025.1
Ribose-phosphate pyrophosphokinase; Derived by automated computational analysis using gene prediction method: Protein Homology.
    
 0.918
AKU14983.1
6-phosphogluconate dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology.
    
 0.915
AKU16810.1
Glucose-6-phosphate isomerase; Derived by automated computational analysis using gene prediction method: Protein Homology.
    
 0.914
rbsK
Hypothetical protein; Catalyzes the phosphorylation of ribose at O-5 in a reaction requiring ATP and magnesium. The resulting D-ribose-5-phosphate can then be used either for sythesis of nucleotides, histidine, and tryptophan, or as a component of the pentose phosphate pathway.
  
 
 0.910
Your Current Organism:
Luteipulveratus mongoliensis
NCBI taxonomy Id: 571913
Other names: Dermacoccaceae bacterium MN07-A0370, L. mongoliensis, Luteipulveratus mongoliensis Ara et al. 2010, NBRC 105296, VTCC D9-09, strain MN07-A0370
Server load: low (12%) [HD]