STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
atpD-2ATP synthase F1 subcomplex beta subunit; Produces ATP from ADP in the presence of a proton gradient across the membrane. The catalytic sites are hosted primarily by the beta subunits. (474 aa)    
Predicted Functional Partners:
atpC
ATP synthase F1 subcomplex epsilon subunit; Produces ATP from ADP in the presence of a proton gradient across the membrane.
 
 0.999
atpG
F-type H+-transporting ATPase subunit gamma; Produces ATP from ADP in the presence of a proton gradient across the membrane. The gamma chain is believed to be important in regulating ATPase activity and the flow of protons through the CF(0) complex.
 0.999
atpA-2
ATP synthase F1 subcomplex alpha subunit; Produces ATP from ADP in the presence of a proton gradient across the membrane. The alpha chain is a regulatory subunit.
0.999
atpH
ATP synthase F1 subcomplex delta subunit; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation.
 
 0.999
atpA
F-type H+-transporting ATPase subunit alpha; Produces ATP from ADP in the presence of a proton gradient across the membrane. The alpha chain is a regulatory subunit.
 
0.998
atpB-2
ATP synthase F0 subcomplex A subunit; Key component of the proton channel; it plays a direct role in the translocation of protons across the membrane. Belongs to the ATPase A chain family.
 
 0.998
SFJ30363.1
F-type H+-transporting ATPase subunit epsilon.
  
 0.997
atpB
ATP synthase F0 subcomplex A subunit; Key component of the proton channel; it plays a direct role in the translocation of protons across the membrane. Belongs to the ATPase A chain family.
 
 0.997
atpE
ATP synthase F0 subcomplex C subunit; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation.
  
 0.997
SFJ30598.1
F-type H+-transporting ATPase subunit gamma.
  
 0.997
Your Current Organism:
Celeribacter halophilus
NCBI taxonomy Id: 576117
Other names: C. halophilus, CGMCC 1.8891, Celeribacter halophilus (Wang et al. 2012) Lai et al. 2014, DSM 26270, Huaishuia halophila, Huaishuia halophila Wang et al. 2012, LMG 24854, LMG:24854, MCCC 1A06432, Pseudoruegeria sp. ZXM137, strain ZXM137
Server load: low (14%) [HD]