STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
recRDNA replication and repair protein RecR; May play a role in DNA repair. It seems to be involved in an RecBC-independent recombinational process of DNA repair. It may act with RecF and RecO. (185 aa)    
Predicted Functional Partners:
SFJ97911.1
Hypothetical protein; Binds to DNA and alters its conformation. May be involved in regulation of gene expression, nucleoid organization and DNA protection.
 
  
 0.989
recO
DNA replication and repair protein RecO; Involved in DNA repair and RecF pathway recombination.
 
 
 0.981
dnaX
DNA polymerase-3 subunit gamma/tau; DNA polymerase III is a complex, multichain enzyme responsible for most of the replicative synthesis in bacteria. This DNA polymerase also exhibits 3' to 5' exonuclease activity.
  
 0.943
tmk
Thymidylate kinase; Phosphorylation of dTMP to form dTDP in both de novo and salvage pathways of dTTP synthesis; Belongs to the thymidylate kinase family.
   
 0.871
recF
DNA replication and repair protein RecF; The RecF protein is involved in DNA metabolism; it is required for DNA replication and normal SOS inducibility. RecF binds preferentially to single-stranded, linear DNA. It also seems to bind ATP; Belongs to the RecF family.
 
  
 0.758
SFJ05397.1
Replicative DNA helicase; Participates in initiation and elongation during chromosome replication; it exhibits DNA-dependent ATPase activity and contains distinct active sites for ATP binding, DNA binding, and interaction with DnaC protein, primase, and other prepriming proteins. Belongs to the helicase family. DnaB subfamily.
 
   
 0.730
dnaA
Chromosomal replication initiator protein DnaA; Plays an important role in the initiation and regulation of chromosomal replication. Binds to the origin of replication; it binds specifically double-stranded DNA at a 9 bp consensus (dnaA box): 5'- TTATC[CA]A[CA]A-3'. DnaA binds to ATP and to acidic phospholipids. Belongs to the DnaA family.
 
  
 0.703
SFJ56443.1
DNA polymerase III, alpha subunit.
  
   
 0.657
xerC
Integrase/recombinase XerD; Site-specific tyrosine recombinase, which acts by catalyzing the cutting and rejoining of the recombining DNA molecules. The XerC- XerD complex is essential to convert dimers of the bacterial chromosome into monomers to permit their segregation at cell division. It also contributes to the segregational stability of plasmids.
  
   
 0.655
xerC-2
Integrase/recombinase XerC; Site-specific tyrosine recombinase, which acts by catalyzing the cutting and rejoining of the recombining DNA molecules. The XerC- XerD complex is essential to convert dimers of the bacterial chromosome into monomers to permit their segregation at cell division. It also contributes to the segregational stability of plasmids.
  
   
 0.645
Your Current Organism:
Celeribacter halophilus
NCBI taxonomy Id: 576117
Other names: C. halophilus, CGMCC 1.8891, Celeribacter halophilus (Wang et al. 2012) Lai et al. 2014, DSM 26270, Huaishuia halophila, Huaishuia halophila Wang et al. 2012, LMG 24854, LMG:24854, MCCC 1A06432, Pseudoruegeria sp. ZXM137, strain ZXM137
Server load: low (22%) [HD]