STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
APC00438.1Hypothetical protein; Derived by automated computational analysis using gene prediction method: GeneMarkS+. (319 aa)    
Predicted Functional Partners:
APC00437.1
Glycosyl transferase; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
  
 0.787
APC00439.1
Hypothetical protein; Derived by automated computational analysis using gene prediction method: GeneMarkS+.
       0.741
APC00436.1
Hypothetical protein; Derived by automated computational analysis using gene prediction method: GeneMarkS+.
  
    0.708
APC00435.1
Hypothetical protein; Derived by automated computational analysis using gene prediction method: GeneMarkS+.
       0.705
APC00745.1
General stress protein CsbD; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the UPF0337 (CsbD) family.
   
    0.623
gmd
GDP-mannose 4,6-dehydratase; Catalyzes the conversion of GDP-D-mannose to GDP-4-dehydro-6- deoxy-D-mannose.
  
    0.507
APC00388.1
NAD(P)-dependent oxidoreductase; Catalyzes the reduction of dTDP-6-deoxy-L-lyxo-4-hexulose to yield dTDP-L-rhamnose; Belongs to the dTDP-4-dehydrorhamnose reductase family.
  
   0.496
APC02297.1
GDP-mannose 4,6-dehydratase; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
    0.494
cpsB
Mannose-1-phosphate guanylyltransferase/mannose-6-phosphate isomerase; Capsular polysaccharide colanic acid biosynthesis protein; catalyzes the formation of GDP-mannose from GTP and alpha-D-mannose 1-phosphate; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the mannose-6-phosphate isomerase type 2 family.
  
  
 0.459
Your Current Organism:
Polynucleobacter asymbioticus
NCBI taxonomy Id: 576611
Other names: Burkholderiaceae bacterium KF022, Burkholderiaceae bacterium KF023, Burkholderiaceae bacterium KF032, Burkholderiaceae bacterium KF040, Burkholderiaceae bacterium KF041, Burkholderiaceae bacterium KF042, Burkholderiaceae bacterium KF043, Burkholderiaceae bacterium KF046, Burkholderiaceae bacterium KF047, Burkholderiaceae bacterium KF069, Burkholderiaceae bacterium KF071, Burkholderiaceae bacterium KF072, CIP 109841, DSM 18221, P. asymbioticus, Polynucleobacter asymbioticus (Hahn et al. 2009) Hahn et al. 2016, Polynucleobacter necessarius subsp. asymbioticus, Polynucleobacter necessarius subsp. asymbioticus Hahn et al. 2009, Polynucleobacter sp. INAWF005, Polynucleobacter sp. INAWF006, Polynucleobacter sp. INAWF008, Polynucleobacter sp. INAWF009, Polynucleobacter sp. INAWF010, Polynucleobacter sp. INAWF011, Polynucleobacter sp. INAWF012, Polynucleobacter sp. INBF001, Polynucleobacter sp. MWH-Creno-4A3, Polynucleobacter sp. MWH-Creno-4D65, Polynucleobacter sp. MWH-Mekk-C4, Polynucleobacter sp. MWH-Mekk-D4, Polynucleobacter sp. MWH-NZ4W7a, Polynucleobacter sp. MWH-P1sevC1, Polynucleobacter sp. P1-KOL8, Polynucleobacter sp. QLW-P1DMWA-2, Polynucleobacter sp. QLW-P1DNSYA-1, Polynucleobacter sp. QLW-P1DNSYA-2, Polynucleobacter sp. QLW-P1FAT50D-2, Polynucleobacter sp. QLW-P1FMW50A-1, Polynucleobacter sp. QLW-P1FNSY20A-6, Polynucleobacter sp. SHIRF001, Polynucleobacter sp. SHIRF002, Polynucleobacter sp. SHIRF003, Polynucleobacter sp. SHIRF004, Polynucleobacter sp. SHIRF005, Polynucleobacter sp. SHIRF006, Polynucleobacter sp. SHIRF007, Polynucleobacter sp. SHIRF008, Polynucleobacter sp. SHIRF009, Polynucleobacter sp. SHIRF010, Polynucleobacter sp. SHIRF011, Polynucleobacter sp. SHIRF012, Polynucleobacter sp. SHIRF013, Polynucleobacter sp. SHIRF014, Polynucleobacter sp. SHIRF015, Polynucleobacter sp. SHIRF016, Polynucleobacter sp. SHIRF017, Polynucleobacter sp. SHIRF018, Polynucleobacter sp. SHIRF019, Polynucleobacter sp. SUWAF015, Polynucleobacter sp. SUWAF016, Polynucleobacter sp. TEGAF008, Polynucleobacter sp. TEGF001, Polynucleobacter sp. UF003, Polynucleobacter sp. UF009, Polynucleobacter sp. USHIF002, Polynucleobacter sp. USHIF003, Polynucleobacter sp. USHIF004, Polynucleobacter sp. USHIF007, Polynucleobacter sp. USHIF009, Polynucleobacter sp. USHIF010, Polynucleobacter sp. USHIF011, Polynucleobacter sp. USHIF012, beta proteobacterium MWH-HuK1, beta proteobacterium MWH-T1W11, strain QLW-P1DMWA-1
Server load: low (22%) [HD]