STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
APC02319.1DNA polymerase V subunit UmuC; Derived by automated computational analysis using gene prediction method: Protein Homology. (441 aa)    
Predicted Functional Partners:
APC00900.1
Repressor; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the peptidase S24 family.
 
 
 0.979
APC00129.1
DNA polymerase III subunit beta; Confers DNA tethering and processivity to DNA polymerases and other proteins. Acts as a clamp, forming a ring around DNA (a reaction catalyzed by the clamp-loading complex) which diffuses in an ATP- independent manner freely and bidirectionally along dsDNA. Initially characterized for its ability to contact the catalytic subunit of DNA polymerase III (Pol III), a complex, multichain enzyme responsible for most of the replicative synthesis in bacteria; Pol III exhibits 3'-5' exonuclease proofreading activity. The beta chain is required for initiation of [...]
   
 0.975
recA
DNA recombination/repair protein RecA; Can catalyze the hydrolysis of ATP in the presence of single- stranded DNA, the ATP-dependent uptake of single-stranded DNA by duplex DNA, and the ATP-dependent hybridization of homologous single-stranded DNAs. It interacts with LexA causing its activation and leading to its autocatalytic cleavage; Belongs to the RecA family.
  
 0.814
polA
DNA polymerase I; In addition to polymerase activity, this DNA polymerase exhibits 5'-3' exonuclease activity; Belongs to the DNA polymerase type-A family.
  
 0.779
APC02351.1
DNA polymerase III subunit delta; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
 
 0.762
lexA
Repressor LexA; Represses a number of genes involved in the response to DNA damage (SOS response), including recA and lexA. In the presence of single-stranded DNA, RecA interacts with LexA causing an autocatalytic cleavage which disrupts the DNA-binding part of LexA, leading to derepression of the SOS regulon and eventually DNA repair.
 
 
 0.757
dnaE
DNA polymerase III subunit alpha; Catalyzes DNA-template-directed extension of the 3'- end of a DNA strand by one nucleotide at a time; main replicative polymerase; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
  
 0.674
APC00542.1
Peptidylprolyl isomerase; Derived by automated computational analysis using gene prediction method: Protein Homology.
    
 
 0.633
ftsW
Cell division protein FtsW; Peptidoglycan polymerase that is essential for cell division. Belongs to the SEDS family. FtsW subfamily.
   
 
 0.602
mrdB
Rod shape-determining protein RodA; Peptidoglycan polymerase that is essential for cell wall elongation; Belongs to the SEDS family. MrdB/RodA subfamily.
   
 
 0.602
Your Current Organism:
Polynucleobacter asymbioticus
NCBI taxonomy Id: 576611
Other names: Burkholderiaceae bacterium KF022, Burkholderiaceae bacterium KF023, Burkholderiaceae bacterium KF032, Burkholderiaceae bacterium KF040, Burkholderiaceae bacterium KF041, Burkholderiaceae bacterium KF042, Burkholderiaceae bacterium KF043, Burkholderiaceae bacterium KF046, Burkholderiaceae bacterium KF047, Burkholderiaceae bacterium KF069, Burkholderiaceae bacterium KF071, Burkholderiaceae bacterium KF072, CIP 109841, DSM 18221, P. asymbioticus, Polynucleobacter asymbioticus (Hahn et al. 2009) Hahn et al. 2016, Polynucleobacter necessarius subsp. asymbioticus, Polynucleobacter necessarius subsp. asymbioticus Hahn et al. 2009, Polynucleobacter sp. INAWF005, Polynucleobacter sp. INAWF006, Polynucleobacter sp. INAWF008, Polynucleobacter sp. INAWF009, Polynucleobacter sp. INAWF010, Polynucleobacter sp. INAWF011, Polynucleobacter sp. INAWF012, Polynucleobacter sp. INBF001, Polynucleobacter sp. MWH-Creno-4A3, Polynucleobacter sp. MWH-Creno-4D65, Polynucleobacter sp. MWH-Mekk-C4, Polynucleobacter sp. MWH-Mekk-D4, Polynucleobacter sp. MWH-NZ4W7a, Polynucleobacter sp. MWH-P1sevC1, Polynucleobacter sp. P1-KOL8, Polynucleobacter sp. QLW-P1DMWA-2, Polynucleobacter sp. QLW-P1DNSYA-1, Polynucleobacter sp. QLW-P1DNSYA-2, Polynucleobacter sp. QLW-P1FAT50D-2, Polynucleobacter sp. QLW-P1FMW50A-1, Polynucleobacter sp. QLW-P1FNSY20A-6, Polynucleobacter sp. SHIRF001, Polynucleobacter sp. SHIRF002, Polynucleobacter sp. SHIRF003, Polynucleobacter sp. SHIRF004, Polynucleobacter sp. SHIRF005, Polynucleobacter sp. SHIRF006, Polynucleobacter sp. SHIRF007, Polynucleobacter sp. SHIRF008, Polynucleobacter sp. SHIRF009, Polynucleobacter sp. SHIRF010, Polynucleobacter sp. SHIRF011, Polynucleobacter sp. SHIRF012, Polynucleobacter sp. SHIRF013, Polynucleobacter sp. SHIRF014, Polynucleobacter sp. SHIRF015, Polynucleobacter sp. SHIRF016, Polynucleobacter sp. SHIRF017, Polynucleobacter sp. SHIRF018, Polynucleobacter sp. SHIRF019, Polynucleobacter sp. SUWAF015, Polynucleobacter sp. SUWAF016, Polynucleobacter sp. TEGAF008, Polynucleobacter sp. TEGF001, Polynucleobacter sp. UF003, Polynucleobacter sp. UF009, Polynucleobacter sp. USHIF002, Polynucleobacter sp. USHIF003, Polynucleobacter sp. USHIF004, Polynucleobacter sp. USHIF007, Polynucleobacter sp. USHIF009, Polynucleobacter sp. USHIF010, Polynucleobacter sp. USHIF011, Polynucleobacter sp. USHIF012, beta proteobacterium MWH-HuK1, beta proteobacterium MWH-T1W11, strain QLW-P1DMWA-1
Server load: low (18%) [HD]