STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
APC01980.13-oxoadipate enol-lactonase; Derived by automated computational analysis using gene prediction method: Protein Homology. (267 aa)    
Predicted Functional Partners:
APC01989.1
Muconolactone delta-isomerase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the muconolactone Delta-isomerase family.
 
 
 0.900
APC01988.1
Catechol 1,2-dioxygenase; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
   
 0.897
APC01982.1
3-oxoadipate CoA-transferase; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
 
 0.886
APC01983.1
3-oxoadipate CoA-transferase; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
 
 0.886
APC01985.1
NADH oxidase; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
  
 0.869
benD
1,6-dihydroxycyclohexa-2,4-diene-1-carboxylate dehydrogenase; Catalyzes the degradation of 2-hydro-1,2-dihydroxy benzoate to catechol; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
   0.851
APC01987.1
Benzoate 1,2-dioxygenase large subunit; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
 
 
 0.836
APC01986.1
Benzoate 1,2-dioxygenase small subunit; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
   
 0.830
APC00658.1
Carboxymuconolactone decarboxylase; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
 
  0.816
APC01981.1
Catalyzes the thiolytic cleavage of beta-ketoadipyl-CoA to succinate and acetyl-CoA; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the thiolase-like superfamily. Thiolase family.
  
 0.812
Your Current Organism:
Polynucleobacter asymbioticus
NCBI taxonomy Id: 576611
Other names: Burkholderiaceae bacterium KF022, Burkholderiaceae bacterium KF023, Burkholderiaceae bacterium KF032, Burkholderiaceae bacterium KF040, Burkholderiaceae bacterium KF041, Burkholderiaceae bacterium KF042, Burkholderiaceae bacterium KF043, Burkholderiaceae bacterium KF046, Burkholderiaceae bacterium KF047, Burkholderiaceae bacterium KF069, Burkholderiaceae bacterium KF071, Burkholderiaceae bacterium KF072, CIP 109841, DSM 18221, P. asymbioticus, Polynucleobacter asymbioticus (Hahn et al. 2009) Hahn et al. 2016, Polynucleobacter necessarius subsp. asymbioticus, Polynucleobacter necessarius subsp. asymbioticus Hahn et al. 2009, Polynucleobacter sp. INAWF005, Polynucleobacter sp. INAWF006, Polynucleobacter sp. INAWF008, Polynucleobacter sp. INAWF009, Polynucleobacter sp. INAWF010, Polynucleobacter sp. INAWF011, Polynucleobacter sp. INAWF012, Polynucleobacter sp. INBF001, Polynucleobacter sp. MWH-Creno-4A3, Polynucleobacter sp. MWH-Creno-4D65, Polynucleobacter sp. MWH-Mekk-C4, Polynucleobacter sp. MWH-Mekk-D4, Polynucleobacter sp. MWH-NZ4W7a, Polynucleobacter sp. MWH-P1sevC1, Polynucleobacter sp. P1-KOL8, Polynucleobacter sp. QLW-P1DMWA-2, Polynucleobacter sp. QLW-P1DNSYA-1, Polynucleobacter sp. QLW-P1DNSYA-2, Polynucleobacter sp. QLW-P1FAT50D-2, Polynucleobacter sp. QLW-P1FMW50A-1, Polynucleobacter sp. QLW-P1FNSY20A-6, Polynucleobacter sp. SHIRF001, Polynucleobacter sp. SHIRF002, Polynucleobacter sp. SHIRF003, Polynucleobacter sp. SHIRF004, Polynucleobacter sp. SHIRF005, Polynucleobacter sp. SHIRF006, Polynucleobacter sp. SHIRF007, Polynucleobacter sp. SHIRF008, Polynucleobacter sp. SHIRF009, Polynucleobacter sp. SHIRF010, Polynucleobacter sp. SHIRF011, Polynucleobacter sp. SHIRF012, Polynucleobacter sp. SHIRF013, Polynucleobacter sp. SHIRF014, Polynucleobacter sp. SHIRF015, Polynucleobacter sp. SHIRF016, Polynucleobacter sp. SHIRF017, Polynucleobacter sp. SHIRF018, Polynucleobacter sp. SHIRF019, Polynucleobacter sp. SUWAF015, Polynucleobacter sp. SUWAF016, Polynucleobacter sp. TEGAF008, Polynucleobacter sp. TEGF001, Polynucleobacter sp. UF003, Polynucleobacter sp. UF009, Polynucleobacter sp. USHIF002, Polynucleobacter sp. USHIF003, Polynucleobacter sp. USHIF004, Polynucleobacter sp. USHIF007, Polynucleobacter sp. USHIF009, Polynucleobacter sp. USHIF010, Polynucleobacter sp. USHIF011, Polynucleobacter sp. USHIF012, beta proteobacterium MWH-HuK1, beta proteobacterium MWH-T1W11, strain QLW-P1DMWA-1
Server load: low (16%) [HD]