STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
APC02163.1Chromosome partitioning protein ParB; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the ParB family. (300 aa)    
Predicted Functional Partners:
APC02164.1
Chromosome partitioning protein ParB; Derived by automated computational analysis using gene prediction method: Protein Homology.
     0.975
APC02162.1
Serine recombinase; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
     0.936
APC00142.1
Chromosome partitioning protein; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
 
 0.781
rsmG
16S rRNA (guanine(527)-N(7))-methyltransferase RsmG; Specifically methylates the N7 position of guanine in position 527 of 16S rRNA.
  
  
 0.576
APC02161.1
Hypothetical protein; Derived by automated computational analysis using gene prediction method: GeneMarkS+.
       0.491
APC02305.1
Replicative DNA helicase; Participates in initiation and elongation during chromosome replication; it exhibits DNA-dependent ATPase activity and contains distinct active sites for ATP binding, DNA binding, and interaction with DnaC protein, primase, and other prepriming proteins. Belongs to the helicase family. DnaB subfamily.
     
 0.430
polA
DNA polymerase I; In addition to polymerase activity, this DNA polymerase exhibits 5'-3' exonuclease activity; Belongs to the DNA polymerase type-A family.
  
  
 0.427
guaA
Glutamine-hydrolyzing GMP synthase; Catalyzes the synthesis of GMP from XMP.
     
 0.415
Your Current Organism:
Polynucleobacter asymbioticus
NCBI taxonomy Id: 576611
Other names: Burkholderiaceae bacterium KF022, Burkholderiaceae bacterium KF023, Burkholderiaceae bacterium KF032, Burkholderiaceae bacterium KF040, Burkholderiaceae bacterium KF041, Burkholderiaceae bacterium KF042, Burkholderiaceae bacterium KF043, Burkholderiaceae bacterium KF046, Burkholderiaceae bacterium KF047, Burkholderiaceae bacterium KF069, Burkholderiaceae bacterium KF071, Burkholderiaceae bacterium KF072, CIP 109841, DSM 18221, P. asymbioticus, Polynucleobacter asymbioticus (Hahn et al. 2009) Hahn et al. 2016, Polynucleobacter necessarius subsp. asymbioticus, Polynucleobacter necessarius subsp. asymbioticus Hahn et al. 2009, Polynucleobacter sp. INAWF005, Polynucleobacter sp. INAWF006, Polynucleobacter sp. INAWF008, Polynucleobacter sp. INAWF009, Polynucleobacter sp. INAWF010, Polynucleobacter sp. INAWF011, Polynucleobacter sp. INAWF012, Polynucleobacter sp. INBF001, Polynucleobacter sp. MWH-Creno-4A3, Polynucleobacter sp. MWH-Creno-4D65, Polynucleobacter sp. MWH-Mekk-C4, Polynucleobacter sp. MWH-Mekk-D4, Polynucleobacter sp. MWH-NZ4W7a, Polynucleobacter sp. MWH-P1sevC1, Polynucleobacter sp. P1-KOL8, Polynucleobacter sp. QLW-P1DMWA-2, Polynucleobacter sp. QLW-P1DNSYA-1, Polynucleobacter sp. QLW-P1DNSYA-2, Polynucleobacter sp. QLW-P1FAT50D-2, Polynucleobacter sp. QLW-P1FMW50A-1, Polynucleobacter sp. QLW-P1FNSY20A-6, Polynucleobacter sp. SHIRF001, Polynucleobacter sp. SHIRF002, Polynucleobacter sp. SHIRF003, Polynucleobacter sp. SHIRF004, Polynucleobacter sp. SHIRF005, Polynucleobacter sp. SHIRF006, Polynucleobacter sp. SHIRF007, Polynucleobacter sp. SHIRF008, Polynucleobacter sp. SHIRF009, Polynucleobacter sp. SHIRF010, Polynucleobacter sp. SHIRF011, Polynucleobacter sp. SHIRF012, Polynucleobacter sp. SHIRF013, Polynucleobacter sp. SHIRF014, Polynucleobacter sp. SHIRF015, Polynucleobacter sp. SHIRF016, Polynucleobacter sp. SHIRF017, Polynucleobacter sp. SHIRF018, Polynucleobacter sp. SHIRF019, Polynucleobacter sp. SUWAF015, Polynucleobacter sp. SUWAF016, Polynucleobacter sp. TEGAF008, Polynucleobacter sp. TEGF001, Polynucleobacter sp. UF003, Polynucleobacter sp. UF009, Polynucleobacter sp. USHIF002, Polynucleobacter sp. USHIF003, Polynucleobacter sp. USHIF004, Polynucleobacter sp. USHIF007, Polynucleobacter sp. USHIF009, Polynucleobacter sp. USHIF010, Polynucleobacter sp. USHIF011, Polynucleobacter sp. USHIF012, beta proteobacterium MWH-HuK1, beta proteobacterium MWH-T1W11, strain QLW-P1DMWA-1
Server load: low (28%) [HD]