STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
ttcAtRNA 2-thiocytidine(32) synthetase TtcA; Catalyzes the ATP-dependent 2-thiolation of cytidine in position 32 of tRNA, to form 2-thiocytidine (s(2)C32). The sulfur atoms are provided by the cysteine/cysteine desulfurase (IscS) system. (302 aa)    
Predicted Functional Partners:
glmU
Glucosamine-1-phosphate N-acetyltransferase; Catalyzes the last two sequential reactions in the de novo biosynthetic pathway for UDP-N-acetylglucosamine (UDP-GlcNAc). The C- terminal domain catalyzes the transfer of acetyl group from acetyl coenzyme A to glucosamine-1-phosphate (GlcN-1-P) to produce N- acetylglucosamine-1-phosphate (GlcNAc-1-P), which is converted into UDP-GlcNAc by the transfer of uridine 5-monophosphate (from uridine 5- triphosphate), a reaction catalyzed by the N-terminal domain.
   
   0.797
glmS
Glutamine--fructose-6-phosphate aminotransferase; Catalyzes the first step in hexosamine metabolism, converting fructose-6P into glucosamine-6P using glutamine as a nitrogen source.
       0.774
APC02172.1
Diguanylate cyclase; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
    0.704
APC02173.1
Short-chain dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology.
       0.592
APC01072.1
Thiamine biosynthesis protein ThiS; With ThiF, ThiG, and ThiO catalyzes the formation of the thiazole moiety of thiamine pyrophosphate; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
   0.581
APC01014.1
Peptidylprolyl isomerase; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
     0.511
APC02174.1
Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology.
       0.505
pheT
phenylalanine--tRNA ligase subunit beta; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the phenylalanyl-tRNA synthetase beta subunit family. Type 1 subfamily.
     
 0.490
mfd
Transcription-repair coupling factor; Couples transcription and DNA repair by recognizing RNA polymerase (RNAP) stalled at DNA lesions. Mediates ATP-dependent release of RNAP and its truncated transcript from the DNA, and recruitment of nucleotide excision repair machinery to the damaged site; In the C-terminal section; belongs to the helicase family. RecG subfamily.
 
  
 0.482
pth
aminoacyl-tRNA hydrolase; The natural substrate for this enzyme may be peptidyl-tRNAs which drop off the ribosome during protein synthesis. Belongs to the PTH family.
  
  
 0.481
Your Current Organism:
Polynucleobacter asymbioticus
NCBI taxonomy Id: 576611
Other names: Burkholderiaceae bacterium KF022, Burkholderiaceae bacterium KF023, Burkholderiaceae bacterium KF032, Burkholderiaceae bacterium KF040, Burkholderiaceae bacterium KF041, Burkholderiaceae bacterium KF042, Burkholderiaceae bacterium KF043, Burkholderiaceae bacterium KF046, Burkholderiaceae bacterium KF047, Burkholderiaceae bacterium KF069, Burkholderiaceae bacterium KF071, Burkholderiaceae bacterium KF072, CIP 109841, DSM 18221, P. asymbioticus, Polynucleobacter asymbioticus (Hahn et al. 2009) Hahn et al. 2016, Polynucleobacter necessarius subsp. asymbioticus, Polynucleobacter necessarius subsp. asymbioticus Hahn et al. 2009, Polynucleobacter sp. INAWF005, Polynucleobacter sp. INAWF006, Polynucleobacter sp. INAWF008, Polynucleobacter sp. INAWF009, Polynucleobacter sp. INAWF010, Polynucleobacter sp. INAWF011, Polynucleobacter sp. INAWF012, Polynucleobacter sp. INBF001, Polynucleobacter sp. MWH-Creno-4A3, Polynucleobacter sp. MWH-Creno-4D65, Polynucleobacter sp. MWH-Mekk-C4, Polynucleobacter sp. MWH-Mekk-D4, Polynucleobacter sp. MWH-NZ4W7a, Polynucleobacter sp. MWH-P1sevC1, Polynucleobacter sp. P1-KOL8, Polynucleobacter sp. QLW-P1DMWA-2, Polynucleobacter sp. QLW-P1DNSYA-1, Polynucleobacter sp. QLW-P1DNSYA-2, Polynucleobacter sp. QLW-P1FAT50D-2, Polynucleobacter sp. QLW-P1FMW50A-1, Polynucleobacter sp. QLW-P1FNSY20A-6, Polynucleobacter sp. SHIRF001, Polynucleobacter sp. SHIRF002, Polynucleobacter sp. SHIRF003, Polynucleobacter sp. SHIRF004, Polynucleobacter sp. SHIRF005, Polynucleobacter sp. SHIRF006, Polynucleobacter sp. SHIRF007, Polynucleobacter sp. SHIRF008, Polynucleobacter sp. SHIRF009, Polynucleobacter sp. SHIRF010, Polynucleobacter sp. SHIRF011, Polynucleobacter sp. SHIRF012, Polynucleobacter sp. SHIRF013, Polynucleobacter sp. SHIRF014, Polynucleobacter sp. SHIRF015, Polynucleobacter sp. SHIRF016, Polynucleobacter sp. SHIRF017, Polynucleobacter sp. SHIRF018, Polynucleobacter sp. SHIRF019, Polynucleobacter sp. SUWAF015, Polynucleobacter sp. SUWAF016, Polynucleobacter sp. TEGAF008, Polynucleobacter sp. TEGF001, Polynucleobacter sp. UF003, Polynucleobacter sp. UF009, Polynucleobacter sp. USHIF002, Polynucleobacter sp. USHIF003, Polynucleobacter sp. USHIF004, Polynucleobacter sp. USHIF007, Polynucleobacter sp. USHIF009, Polynucleobacter sp. USHIF010, Polynucleobacter sp. USHIF011, Polynucleobacter sp. USHIF012, beta proteobacterium MWH-HuK1, beta proteobacterium MWH-T1W11, strain QLW-P1DMWA-1
Server load: low (16%) [HD]