STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
KJZ20833.1Succinate dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the succinate dehydrogenase/fumarate reductase iron-sulfur protein family. (259 aa)    
Predicted Functional Partners:
KJZ20836.1
Part of four member fumarate reductase enzyme complex FrdABCD which catalyzes the reduction of fumarate to succinate during anaerobic respiration; FrdAB are the catalytic subcomplex consisting of a flavoprotein subunit and an iron-sulfur subunit, respectively; FrdCD are the membrane components which interact with quinone and are involved in electron transfer; the catalytic subunits are similar to succinate dehydrogenase SdhAB; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the FAD-dependent oxidoreductase 2 family. FRD/SDH subfamily.
 
 0.999
KJZ20837.1
Succinate dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
 0.999
KJZ21074.1
Succinate dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
 0.999
KJZ20939.1
NADH-quinone oxidoreductase subunit F; Derived by automated computational analysis using gene prediction method: Protein Homology.
   
 
 0.997
KJZ17175.1
Catalyzes the oxidation of tricarballylate to cis-aconitate; FAD-dependent; required for the utilization of tricarballylate as a carbon and energy source by S. enterica; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
 0.997
sucD
succinate--CoA ligase; Succinyl-CoA synthetase functions in the citric acid cycle (TCA), coupling the hydrolysis of succinyl-CoA to the synthesis of either ATP or GTP and thus represents the only step of substrate-level phosphorylation in the TCA. The alpha subunit of the enzyme binds the substrates coenzyme A and phosphate, while succinate binding and nucleotide specificity is provided by the beta subunit.
 
 0.993
KJZ18516.1
FAD-binding dehydrogenase; Proposed role in polysaccahride synthesis; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
 0.992
sucC
succinyl-CoA synthetase subunit beta; Succinyl-CoA synthetase functions in the citric acid cycle (TCA), coupling the hydrolysis of succinyl-CoA to the synthesis of either ATP or GTP and thus represents the only step of substrate-level phosphorylation in the TCA. The beta subunit provides nucleotide specificity of the enzyme and binds the substrate succinate, while the binding sites for coenzyme A and phosphate are found in the alpha subunit.
 
 0.989
KJZ20316.1
Pyruvate dehydrogenase; The pyruvate dehydrogenase complex catalyzes the overall conversion of pyruvate to acetyl-CoA and CO2.
  
 0.987
nuoI
NADH dehydrogenase; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient.
  
 
 0.980
Your Current Organism:
Loktanella sp. S4079
NCBI taxonomy Id: 579483
Other names: L. sp. S4079
Server load: low (18%) [HD]