STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
accDacetyl-CoA carboxyl transferase; Component of the acetyl coenzyme A carboxylase (ACC) complex. Biotin carboxylase (BC) catalyzes the carboxylation of biotin on its carrier protein (BCCP) and then the CO(2) group is transferred by the transcarboxylase to acetyl-CoA to form malonyl-CoA; Belongs to the AccD/PCCB family. (302 aa)    
Predicted Functional Partners:
KZC98334.1
acetyl-CoA carboxylase biotin carboxylase subunit; This protein is a component of the acetyl coenzyme A carboxylase complex; first, biotin carboxylase catalyzes the carboxylation of the carrier protein and then the transcarboxylase transfers the carboxyl group to form malonyl-CoA.
 0.999
KZC98333.1
acetyl-CoA carboxylase biotin carboxyl carrier protein subunit; This protein is a component of the acetyl coenzyme A carboxylase complex; first, biotin carboxylase catalyzes the carboxylation of the carrier protein and then the transcarboxylase transfers the carboxyl group to form malonyl-CoA.
 
 0.998
fabH
3-oxoacyl-ACP synthase; Catalyzes the condensation reaction of fatty acid synthesis by the addition to an acyl acceptor of two carbons from malonyl-ACP. Catalyzes the first condensation reaction which initiates fatty acid synthesis and may therefore play a role in governing the total rate of fatty acid production. Possesses both acetoacetyl-ACP synthase and acetyl transacylase activities. Its substrate specificity determines the biosynthesis of branched-chain and/or straight-chain of fatty acids; Belongs to the thiolase-like superfamily. FabH family.
 
 
 0.991
KZD01551.1
3-methylcrotonyl-CoA carboxylase; Derived by automated computational analysis using gene prediction method: Protein Homology.
 0.987
KZC98235.1
acetyl/propionyl-CoA carboxylase subuit alpha; Derived by automated computational analysis using gene prediction method: Protein Homology.
 0.984
KZD11950.1
ACP S-malonyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
 
 0.982
KZD09813.1
Pyruvate dehydrogenase; The pyruvate dehydrogenase complex catalyzes the overall conversion of pyruvate to acetyl-CoA and CO2.
  
 0.979
fabZ
3-hydroxyacyl-[acyl-carrier-protein] dehydratase FabZ; Involved in unsaturated fatty acids biosynthesis. Catalyzes the dehydration of short chain beta-hydroxyacyl-ACPs and long chain saturated and unsaturated beta-hydroxyacyl-ACPs.
 
 
 0.968
KZD09516.1
Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
 
 0.939
KZD04096.1
Beta-ketoacyl-[acyl-carrier-protein] synthase II; Catalyzes the condensation reaction of fatty acid synthesis by the addition to an acyl acceptor of two carbons from malonyl-ACP.
 
 
 0.909
Your Current Organism:
Oceanibaculum pacificum
NCBI taxonomy Id: 580166
Other names: CCTCC AB 209059, LMG 24859, LMG:24859, MCCC 1A02656, O. pacificum, Oceanibaculum pacificum Dong et al. 2010, Rhodospirillaceae bacterium MC2UP-L3, strain LMC2up-L3, strain MC2UP-L3
Server load: low (14%) [HD]