STRINGSTRING
rpsH protein (Sideroxydans lithotrophicus) - STRING interaction network
"rpsH" - 30S ribosomal protein S8 in Sideroxydans lithotrophicus
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
rpsH30S ribosomal protein S8; One of the primary rRNA binding proteins, it binds directly to 16S rRNA central domain where it helps coordinate assembly of the platform of the 30S subunit (131 aa)    
Predicted Functional Partners:
rpsE
30S ribosomal protein S5; Located at the back of the 30S subunit body where it stabilizes the conformation of the head with respect to the body (174 aa)
 
  0.999
rpsN
Ribosomal protein S14; Binds 16S rRNA, required for the assembly of 30S particles and may also be responsible for determining the conformation of the 16S rRNA at the A site (101 aa)
 
  0.999
rpsK
30S ribosomal protein S11; Located on the platform of the 30S subunit, it bridges several disparate RNA helices of the 16S rRNA. Forms part of the Shine-Dalgarno cleft in the 70S ribosome (129 aa)
 
  0.999
rplE
50S ribosomal protein L5; This is 1 of the proteins that binds and probably mediates the attachment of the 5S RNA into the large ribosomal subunit, where it forms part of the central protuberance. In the 70S ribosome it contacts protein S13 of the 30S subunit (bridge B1b), connecting the 2 subunits; this bridge is implicated in subunit movement. Contacts the P site tRNA; the 5S rRNA and some of its associated proteins might help stabilize positioning of ribosome-bound tRNAs (179 aa)
 
  0.999
rplF
50S ribosomal protein L6; This protein binds to the 23S rRNA, and is important in its secondary structure. It is located near the subunit interface in the base of the L7/L12 stalk, and near the tRNA binding site of the peptidyltransferase center (177 aa)
 
  0.999
rpsC
30S ribosomal protein S3; Binds the lower part of the 30S subunit head. Binds mRNA in the 70S ribosome, positioning it for translation (238 aa)
 
  0.999
rpsQ
30S ribosomal protein S17; One of the primary rRNA binding proteins, it binds specifically to the 5’-end of 16S ribosomal RNA (87 aa)
 
  0.999
rpsM
30S ribosomal protein S13; Located at the top of the head of the 30S subunit, it contacts several helices of the 16S rRNA. In the 70S ribosome it contacts the 23S rRNA (bridge B1a) and protein L5 of the 50S subunit (bridge B1b), connecting the 2 subunits; these bridges are implicated in subunit movement. Contacts the tRNAs in the A and P- sites (121 aa)
 
  0.999
rpsD
30S ribosomal protein S4; One of the primary rRNA binding proteins, it binds directly to 16S rRNA where it nucleates assembly of the body of the 30S subunit (209 aa)
 
  0.999
rpsS
Ribosomal protein S19; Protein S19 forms a complex with S13 that binds strongly to the 16S ribosomal RNA (93 aa)
 
  0.999
Your Current Organism:
Sideroxydans lithotrophicus
NCBI taxonomy Id: 580332
Other names: S. lithotrophicus, S. lithotrophicus ES-1, Siderooxidans, Siderooxidans lithoautotrophicus, Sideroxydans, Sideroxydans lithotrophicus, Sideroxydans lithotrophicus ES-1, Sideroxydans lithotrophicus str. ES-1, Sideroxydans lithotrophicus strain ES-1, iron-oxidizing lithotroph ES-1
Server load: low (7%) [HD]