STRINGSTRING
gluQ protein (Sideroxydans lithotrophicus) - STRING interaction network
"gluQ" - glutamate--tRNA ligase in Sideroxydans lithotrophicus
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
gluQglutamate--tRNA ligase; Catalyzes the tRNA-independent activation of glutamate in presence of ATP and the subsequent transfer of glutamate onto a tRNA(Asp). Glutamate is transferred on the 2-amino-5-(4,5- dihydroxy-2-cyclopenten-1-yl) moiety of the queuosine in the wobble position of the QUC anticodon (304 aa)    
Predicted Functional Partners:
metG
methionyl-tRNA synthetase; Is required not only for elongation of protein synthesis but also for the initiation of all mRNA translation through initiator tRNA(fMet) aminoacylation (743 aa)
   
  0.999
pheT
phenylalanyl-tRNA synthetase, subunit beta (784 aa)
   
  0.983
argS
arginyl-tRNA synthetase (558 aa)
 
  0.951
ileS
isoleucyl-tRNA synthetase; Catalyzes the attachment of isoleucine to tRNA(Ile). As IleRS can inadvertently accommodate and process structurally similar amino acids such as valine, to avoid such errors it has two additional distinct tRNA(Ile)-dependent editing activities. One activity is designated as ’pretransfer’ editing and involves the hydrolysis of activated Val-AMP. The other activity is designated ’posttransfer’ editing and involves deacylation of mischarged Val-tRNA(Ile) (962 aa)
 
  0.940
lysS
lysyl-tRNA synthetase (500 aa)
   
  0.918
hemA
glutamyl-tRNA reductase; Catalyzes the NADPH-dependent reduction of glutamyl- tRNA(Glu) to glutamate 1-semialdehyde (GSA) (417 aa)
     
 
  0.908
Slit_0115
Glutamate synthase (ferredoxin) (1565 aa)
     
   
  0.896
proS
prolyl-tRNA synthetase; Catalyzes the attachment of proline to tRNA(Pro) in a two-step reaction- proline is first activated by ATP to form Pro- AMP and then transferred to the acceptor end of tRNA(Pro). As ProRS can inadvertently accommodate and process non-cognate amino acids such as alanine and cysteine, to avoid such errors it has two additional distinct editing activities against alanine. One activity is designated as ’pretransfer’ editing and involves the tRNA(Pro)-independent hydrolysis of activated Ala-AMP. The other activity is designated ’posttransfer’ editing and involves dea [...] (566 aa)
   
  0.891
Slit_0965
ATP-dependent Clp protease ATP-binding protein (753 aa)
   
   
  0.873
clpS
ATP-dependent Clp protease adaptor protein ClpS; Involved in the modulation of the specificity of the ClpAP-mediated ATP-dependent protein degradation (100 aa)
              0.862
Your Current Organism:
Sideroxydans lithotrophicus
NCBI taxonomy Id: 580332
Other names: S. lithotrophicus, S. lithotrophicus ES-1, Siderooxidans, Siderooxidans lithoautotrophicus, Sideroxydans, Sideroxydans lithotrophicus, Sideroxydans lithotrophicus ES-1, Sideroxydans lithotrophicus str. ES-1, Sideroxydans lithotrophicus strain ES-1, iron-oxidizing lithotroph ES-1
Server load: low (10%) [HD]