STRINGSTRING
recR protein (Sideroxydans lithotrophicus) - STRING interaction network
"recR" - Recombination protein RecR in Sideroxydans lithotrophicus
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
recRRecombination protein RecR; May play a role in DNA repair. It seems to be involved in an RecBC-independent recombinational process of DNA repair. It may act with RecF and RecO (199 aa)    
Predicted Functional Partners:
Slit_1266
Hypothetical protein; Binds to DNA and alters its conformation. May be involved in regulation of gene expression, nucleoid organization and DNA protection (107 aa)
   
  0.983
recO
DNA repair protein RecO; Involved in DNA repair and RecF pathway recombination (243 aa)
 
 
  0.976
Slit_1268
RNA-binding S4 domain protein (280 aa)
              0.859
Slit_1265
DNA polymerase III, subunits gamma and tau (537 aa)
   
   
  0.837
recG
ATP-dependent DNA helicase RecG; Critical role in recombination and DNA repair. Helps process Holliday junction intermediates to mature products by catalyzing branch migration. Has a DNA unwinding activity characteristic of a DNA helicase with a 3’- to 5’- polarity. Unwinds branched duplex DNA (Y-DNA) (673 aa)
   
   
  0.798
rep
UvrD/REP helicase; Rep helicase is a single-stranded DNA-dependent ATPase involved in DNA replication; it can initiate unwinding at a nick in the DNA. It binds to the single-stranded DNA and acts in a progressive fashion along the DNA in the 3’ to 5’ direction (662 aa)
 
 
  0.763
Slit_1049
DNA repair protein RecN; May be involved in recombinational repair of damaged DNA (553 aa)
   
     
  0.741
recA
recA protein; Can catalyze the hydrolysis of ATP in the presence of single-stranded DNA, the ATP-dependent uptake of single-stranded DNA by duplex DNA, and the ATP-dependent hybridization of homologous single-stranded DNAs. It interacts with LexA causing its activation and leading to its autocatalytic cleavage (341 aa)
   
 
 
  0.667
uvrB
Excinuclease ABC subunit B; The UvrABC repair system catalyzes the recognition and processing of DNA lesions. A damage recognition complex composed of 2 UvrA and 2 UvrB subunits scans DNA for abnormalities. Upon binding of the UvrA(2)B(2) complex to a putative damaged site, the DNA wraps around one UvrB monomer. DNA wrap is dependent on ATP binding by UvrB and probably causes local melting of the DNA helix, facilitating insertion of UvrB beta-hairpin between the DNA strands. Then UvrB probes one DNA strand for the presence of a lesion. If a lesion is found the UvrA subunits dissociate [...] (674 aa)
   
 
  0.667
Slit_2833
DNA polymerase I (929 aa)
   
 
  0.632
Your Current Organism:
Sideroxydans lithotrophicus
NCBI taxonomy Id: 580332
Other names: S. lithotrophicus, S. lithotrophicus ES-1, Siderooxidans, Siderooxidans lithoautotrophicus, Sideroxydans, Sideroxydans lithotrophicus, Sideroxydans lithotrophicus ES-1, Sideroxydans lithotrophicus str. ES-1, Sideroxydans lithotrophicus strain ES-1, iron-oxidizing lithotroph ES-1
Server load: low (7%) [HD]