STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
sufBFeS cluster assembly protein SufB; With SufCD activates cysteine desulfurase SufS; Derived by automated computational analysis using gene prediction method: Protein Homology. (494 aa)    
Predicted Functional Partners:
sufC
Fe-S cluster assembly ATPase SufC; Part of SUF system involved in inserting iron-sulfur clusters into proteins; in Escherichia coli this protein forms a complex with SufBD; the SufBCD complex stimulates the cysteine desulfurase SufS in conjunction with SufE; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
 0.999
sufD
Fe-S cluster assembly protein SufD; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
 
0.996
AMG70200.1
Cysteine sulfinate desulfinase; Cysteine desulfurases mobilize the sulfur from L-cysteine to yield L-alanine, an essential step in sulfur metabolism for biosynthesis of a variety of sulfur-containing biomolecules. Component of the suf operon, which is activated and required under specific conditions such as oxidative stress and iron limitation. Acts as a potent selenocysteine lyase in vitro, that mobilizes selenium from L- selenocysteine. Selenocysteine lyase activity is however unsure in vivo.
 
 
 0.975
AMG72130.1
Cysteine sulfinate desulfinase; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
 
 0.938
sufA
Fe-S cluster assembly scaffold SufA; Functions as a scaffold on which iron-sulfur clusters ([2Fe-2S]; [4Fe-4S]) are assembled; forms a homodimer; similar to IscA protein; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the HesB/IscA family.
  
 
 0.933
sufE
Cysteine desufuration protein SufE; Acts with SufS to catalyze the formation of L-alanine from L-cysteine; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
 
 0.905
nifU
Scaffolding protein; A scaffold on which IscS assembles Fe-S clusters. It is likely that Fe-S cluster coordination is flexible as the role of this complex is to build and then hand off Fe-S clusters.
  
  
 0.878
iscA
Iron-sulfur cluster assembly protein IscA; Is able to transfer iron-sulfur clusters to apo-ferredoxin. Multiple cycles of [2Fe2S] cluster formation and transfer are observed, suggesting that IscA acts catalytically. Recruits intracellular free iron so as to provide iron for the assembly of transient iron-sulfur cluster in IscU in the presence of IscS, L-cysteine and the thioredoxin reductase system TrxA/TrxB.
  
 
 0.752
AMG72129.1
Fe-S metabolism protein SufE; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
 
 0.710
nfuA
Fe/S biogenesis protein NfuA; Involved in iron-sulfur cluster biogenesis. Binds a 4Fe-4S cluster, can transfer this cluster to apoproteins, and thereby intervenes in the maturation of Fe/S proteins. Could also act as a scaffold/chaperone for damaged Fe/S proteins.
  
 
 0.678
Your Current Organism:
Morganella morganii
NCBI taxonomy Id: 582
Other names: ATCC 25830, ATCC 8076H, Bacillus morgani, CCUG 6328, CIP 103763, CIP A231, DSM 30164, IFO 3848, LMG 7874, LMG:7874, M. morganii, NBRC 3848, NCCB 73065, NCIB 235, NCIB:235, NCTC 235, Organism N 1, Proteus morganii, Salmonella morgani
Server load: low (20%) [HD]