STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
ureCUrease subunit alpha; Ureases catalyze the hydrolysis of urea into ammonia and carbon dioxide; in Helicobacter pylori the ammonia released plays a key role in bacterial survival by neutralizing acids when colonizing the gastric mucosa; the holoenzyme is composed of 3 ureC (alpha) and 3 ureAB (gamma/beta) subunits; Derived by automated computational analysis using gene prediction method: Protein Homology. (572 aa)    
Predicted Functional Partners:
ureA
Urease subunit gamma; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the urease gamma subunit family.
 0.999
ureB
Urease subunit beta; Ureases catalyze the hydrolysis of urea into ammonia and carbon dioxide; in Helicobacter pylori and Yersinia enterocolitica the ammonia released plays a key role in bacterial survival by neutralizing acids when colonizing the gastric mucosa; the holoenzyme is composed of 3 UreC (alpha) and 3 UreAB (gamma/beta); Derived by automated computational analysis using gene prediction method: Protein Homology.
 0.999
ureF
Urease accessory protein UreF; Required for maturation of urease via the functional incorporation of the urease nickel metallocenter.
 
 
 0.995
ureE
Urease accessory protein UreE; Involved in urease metallocenter assembly. Binds nickel. Probably functions as a nickel donor during metallocenter assembly. Belongs to the UreE family.
 
  
 0.987
ureG
Urease accessory protein UreG; Facilitates the functional incorporation of the urease nickel metallocenter. This process requires GTP hydrolysis, probably effectuated by UreG.
 
  
 0.980
ureD
Urease accessory protein UreD; Required for maturation of urease via the functional incorporation of the urease nickel metallocenter.
 
  
 0.955
yut
Urea transporter; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
  
 0.829
AMG71004.1
Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
  
 0.708
glmM
Phosphoglucosamine mutase; Catalyzes the conversion of glucosamine-6-phosphate to glucosamine-1-phosphate; Belongs to the phosphohexose mutase family.
      
 0.559
zapA
Z-ring-associated protein; Activator of cell division through the inhibition of FtsZ GTPase activity, therefore promoting FtsZ assembly into bundles of protofilaments necessary for the formation of the division Z ring. It is recruited early at mid-cell but it is not essential for cell division.
      
 0.518
Your Current Organism:
Morganella morganii
NCBI taxonomy Id: 582
Other names: ATCC 25830, ATCC 8076H, Bacillus morgani, CCUG 6328, CIP 103763, CIP A231, DSM 30164, IFO 3848, LMG 7874, LMG:7874, M. morganii, NBRC 3848, NCCB 73065, NCIB 235, NCIB:235, NCTC 235, Organism N 1, Proteus morganii, Salmonella morgani
Server load: low (14%) [HD]