STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
AII48774.1Hypothetical protein; Derived by automated computational analysis using gene prediction method: GeneMarkS+. (119 aa)    
Predicted Functional Partners:
AII50069.1
(2Fe-2S)-binding protein; Derived by automated computational analysis using gene prediction method: GeneMarkS+.
  
 
 0.927
dxr
1-deoxy-D-xylulose 5-phosphate reductoisomerase; Catalyzes the NADP-dependent rearrangement and reduction of 1-deoxy-D-xylulose-5-phosphate (DXP) to 2-C-methyl-D-erythritol 4- phosphate (MEP); Belongs to the DXR family.
       0.800
ndhD
NAD(P)H-quinone oxidoreductase subunit 4; NDH-1 shuttles electrons from NAD(P)H, via FMN and iron- sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 4 family.
  
    0.601
AII49832.1
NAD(P)H-quinone oxidoreductase subunit 4; Shuttles electrons from NAD(P)H, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain; subunit D, with NdhB and NdhF are core membrane components; Derived by automated computational analysis using gene prediction method: GeneMarkS+.
  
    0.601
AII50074.1
NAD(P)H-quinone oxidoreductase subunit D4; Catalyzes the transfer of electrons from NADH to ubiquinone; NdhD4 is possibly involved in a constitutive CO(2)-uptake system; Derived by automated computational analysis using gene prediction method: GeneMarkS+.
  
    0.601
AII48776.1
SNF family Na(+)-dependent transporter; Derived by automated computational analysis using gene prediction method: GeneMarkS+.
       0.552
AII47706.1
Precorrin-3 methylase; Derived by automated computational analysis using gene prediction method: GeneMarkS+.
     
 0.500
ndhA
NADPH-quinone oxidoreductase; NDH-1 shuttles electrons from an unknown electron donor, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory and/or the photosynthetic chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient.
  
  
 0.407
Your Current Organism:
Synechococcus sp. KORDI52
NCBI taxonomy Id: 585425
Other names: S. sp. KORDI-52, Synechococcus sp. KORDI-52
Server load: low (12%) [HD]