STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
SFQ11017.1Methyltransferase small domain-containing protein; Belongs to the methyltransferase superfamily. (502 aa)    
Predicted Functional Partners:
prfA
Peptide chain release factor 1; Peptide chain release factor 1 directs the termination of translation in response to the peptide chain termination codons UAG and UAA.
  
 
 0.933
dtd
D-tyrosyl-tRNA(Tyr) deacylase; An aminoacyl-tRNA editing enzyme that deacylates mischarged D-aminoacyl-tRNAs. Also deacylates mischarged glycyl-tRNA(Ala), protecting cells against glycine mischarging by AlaRS. Acts via tRNA- based rather than protein-based catalysis; rejects L-amino acids rather than detecting D-amino acids in the active site. By recycling D- aminoacyl-tRNA to D-amino acids and free tRNA molecules, this enzyme counteracts the toxicity associated with the formation of D-aminoacyl- tRNA entities in vivo and helps enforce protein L-homochirality. Belongs to the DTD family.
  
    0.826
atpE
F-type H+-transporting ATPase subunit c; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation.
 
   0.690
atpH
F-type H+-transporting ATPase subunit delta; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation.
  
   0.639
SFQ11044.1
DNA segregation ATPase FtsK/SpoIIIE, S-DNA-T family.
 
     0.619
atpG
F-type H+-transporting ATPase subunit gamma; Produces ATP from ADP in the presence of a proton gradient across the membrane. The gamma chain is believed to be important in regulating ATPase activity and the flow of protons through the CF(0) complex.
  
   0.616
atpA
F-type H+-transporting ATPase subunit alpha; Produces ATP from ADP in the presence of a proton gradient across the membrane. The alpha chain is a regulatory subunit.
  
   0.615
atpC
F-type H+-transporting ATPase subunit epsilon; Produces ATP from ADP in the presence of a proton gradient across the membrane.
  
   0.608
atpD
F-type H+-transporting ATPase subunit beta; Produces ATP from ADP in the presence of a proton gradient across the membrane. The catalytic sites are hosted primarily by the beta subunits.
  
   0.608
SFO93443.1
Hypothetical protein.
 
     0.600
Your Current Organism:
Yuhushiella deserti
NCBI taxonomy Id: 587909
Other names: CGMCC 4.5579, DSM 45648, JCM 16584, Pseudonocardiaceae bacterium RA45, Y. deserti, Yuhushiella deserti Mao et al. 2011, strain RA45
Server load: low (12%) [HD]