STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
A0E3Z9_PARTEV-type proton ATPase subunit C; Subunit of the peripheral V1 complex of vacuolar ATPase. Subunit C is necessary for the assembly of the catalytic sector of the enzyme and is likely to have a specific function in its catalytic activity. V-ATPase is responsible for acidifying a variety of intracellular compartments in eukaryotic cells. (405 aa)    
Predicted Functional Partners:
A0DGS0_PARTE
V-type proton ATPase subunit F; Subunit of the peripheral V1 complex of vacuolar ATPase essential for assembly or catalytic function. V-ATPase is responsible for acidifying a variety of intracellular compartments in eukaryotic cells.
   
 0.999
A0EA65_PARTE
Uncharacterized protein.
   
 0.999
A0BHN7_PARTE
Uncharacterized protein; Belongs to the V-ATPase proteolipid subunit family.
   
 0.997
A0BQZ8_PARTE
Uncharacterized protein; Belongs to the V-ATPase proteolipid subunit family.
   
 0.997
A0BYU7_PARTE
V-type proton ATPase subunit H; Subunit of the peripheral V1 complex of vacuolar ATPase. Subunit H activates ATPase activity of the enzyme and couples ATPase activity to proton flow. Vacuolar ATPase is responsible for acidifying a variety of intracellular compartments in eukaryotic cells, thus providing most of the energy required for transport processes in the vacuolar system.
   
 0.994
A0C2Y3_PARTE
V-type proton ATPase subunit H; Subunit of the peripheral V1 complex of vacuolar ATPase. Subunit H activates ATPase activity of the enzyme and couples ATPase activity to proton flow. Vacuolar ATPase is responsible for acidifying a variety of intracellular compartments in eukaryotic cells, thus providing most of the energy required for transport processes in the vacuolar system.
   
 0.994
A0C6M7_PARTE
V-type proton ATPase subunit H; Subunit of the peripheral V1 complex of vacuolar ATPase. Subunit H activates ATPase activity of the enzyme and couples ATPase activity to proton flow. Vacuolar ATPase is responsible for acidifying a variety of intracellular compartments in eukaryotic cells, thus providing most of the energy required for transport processes in the vacuolar system.
   
 0.994
A0E6Z3_PARTE
V-ATPase_H_C domain-containing protein.
   
 0.994
A0E6Z4_PARTE
Uncharacterized protein.
   
 0.994
A0C552_PARTE
Uncharacterized protein.
   
 0.992
Your Current Organism:
Paramecium tetraurelia
NCBI taxonomy Id: 5888
Other names: P. tetraurelia, Paramecium aurelia syngen 4
Server load: low (28%) [HD]