STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
ruvCCrossover junction endodeoxyribonuclease RuvC; Nuclease that resolves Holliday junction intermediates in genetic recombination. Cleaves the cruciform structure in supercoiled DNA by nicking to strands with the same polarity at sites symmetrically opposed at the junction in the homologous arms and leaves a 5'-terminal phosphate and a 3'-terminal hydroxyl group. (188 aa)    
Predicted Functional Partners:
ruvA
Holliday junction DNA helicase RuvA; The RuvA-RuvB complex in the presence of ATP renatures cruciform structure in supercoiled DNA with palindromic sequence, indicating that it may promote strand exchange reactions in homologous recombination. RuvAB is a helicase that mediates the Holliday junction migration by localized denaturation and reannealing. RuvA stimulates, in the presence of DNA, the weak ATPase activity of RuvB.
 
 0.999
ruvB
Holliday junction DNA helicase RuvB; The RuvA-RuvB complex in the presence of ATP renatures cruciform structure in supercoiled DNA with palindromic sequence, indicating that it may promote strand exchange reactions in homologous recombination. RuvAB is a helicase that mediates the Holliday junction migration by localized denaturation and reannealing.
 
 
 0.994
Celf_2032
PFAM: protein of unknown function DUF28; KEGG: protein of unknown function DUF28.
 
  
 0.815
recX
Regulatory protein RecX; Modulates RecA activity; Belongs to the RecX family.
 
  
 0.792
recA
recA protein; Can catalyze the hydrolysis of ATP in the presence of single- stranded DNA, the ATP-dependent uptake of single-stranded DNA by duplex DNA, and the ATP-dependent hybridization of homologous single-stranded DNAs. It interacts with LexA causing its activation and leading to its autocatalytic cleavage; Belongs to the RecA family.
   
  
 0.780
pdxT
SNO glutamine amidotransferase; Catalyzes the hydrolysis of glutamine to glutamate and ammonia as part of the biosynthesis of pyridoxal 5'-phosphate. The resulting ammonia molecule is channeled to the active site of PdxS.
       0.737
polA
DNA polymerase I; In addition to polymerase activity, this DNA polymerase exhibits 5'-3' exonuclease activity; Belongs to the DNA polymerase type-A family.
 
   
 0.668
pdxS
Pyridoxine biosynthesis protein; Catalyzes the formation of pyridoxal 5'-phosphate from ribose 5-phosphate (RBP), glyceraldehyde 3-phosphate (G3P) and ammonia. The ammonia is provided by the PdxT subunit. Can also use ribulose 5- phosphate and dihydroxyacetone phosphate as substrates, resulting from enzyme-catalyzed isomerization of RBP and G3P, respectively. Belongs to the PdxS/SNZ family.
       0.650
Celf_1510
TIGRFAM: Mg chelatase, subunit ChlI; PFAM: magnesium chelatase ChlI subunit; KEGG: Mg chelatase, subunit ChlI; SMART: AAA ATPase.
 
   
 0.642
thrS
KEGG: threonyl-tRNA synthetase; TIGRFAM: threonyl-tRNA synthetase; PFAM: tRNA synthetase class II (G H P and S); Threonyl/alanyl tRNA synthetase SAD; Anticodon-binding domain protein; Belongs to the class-II aminoacyl-tRNA synthetase family.
 
    0.634
Your Current Organism:
Cellulomonas fimi
NCBI taxonomy Id: 590998
Other names: C. fimi ATCC 484, Cellulomonas fimi ATCC 484, Cellulomonas fimi DSM 20113, Cellulomonas fimi str. ATCC 484, Cellulomonas fimi strain ATCC 484
Server load: low (28%) [HD]