STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
Celf_3388KEGG: hypothetical protein. (137 aa)    
Predicted Functional Partners:
gyrB
DNA gyrase, B subunit; A type II topoisomerase that negatively supercoils closed circular double-stranded (ds) DNA in an ATP-dependent manner to modulate DNA topology and maintain chromosomes in an underwound state. Negative supercoiling favors strand separation, and DNA replication, transcription, recombination and repair, all of which involve strand separation. Also able to catalyze the interconversion of other topological isomers of dsDNA rings, including catenanes and knotted rings. Type II topoisomerases break and join 2 DNA strands simultaneously in an ATP-dependent manner.
    
 
 0.659
Celf_2160
PFAM: DNA gyrase subunit B domain protein; DNA topoisomerase type IIA subunit B region 2 domain protein; ATP-binding region ATPase domain protein; TOPRIM domain-containing protein; KEGG: DNA topoisomerase (ATP-hydrolyzing); SMART: DNA topoisomerase II; ATP-binding region ATPase domain protein.
    
 
 0.659
gyrA
DNA gyrase, A subunit; A type II topoisomerase that negatively supercoils closed circular double-stranded (ds) DNA in an ATP-dependent manner to modulate DNA topology and maintain chromosomes in an underwound state. Negative supercoiling favors strand separation, and DNA replication, transcription, recombination and repair, all of which involve strand separation. Also able to catalyze the interconversion of other topological isomers of dsDNA rings, including catenanes and knotted rings. Type II topoisomerases break and join 2 DNA strands simultaneously in an ATP-dependent manner.
    
 
 0.635
Celf_2157
PFAM: DNA gyrase/topoisomerase IV subunit A; DNA gyrase repeat beta-propeller; KEGG: DNA topoisomerase (ATP-hydrolyzing); SMART: DNA gyrase/topoisomerase IV subunit A.
    
 
 0.635
Celf_3389
KEGG: transcriptional regulator, Crp/Fnr family; PFAM: cyclic nucleotide-binding; regulatory protein Crp; SMART: cyclic nucleotide-binding; regulatory protein Crp.
       0.552
nth
Endonuclease III; DNA repair enzyme that has both DNA N-glycosylase activity and AP-lyase activity. The DNA N-glycosylase activity releases various damaged pyrimidines from DNA by cleaving the N-glycosidic bond, leaving an AP (apurinic/apyrimidinic) site. The AP-lyase activity cleaves the phosphodiester bond 3' to the AP site by a beta-elimination, leaving a 3'-terminal unsaturated sugar and a product with a terminal 5'- phosphate.
       0.513
Your Current Organism:
Cellulomonas fimi
NCBI taxonomy Id: 590998
Other names: C. fimi ATCC 484, Cellulomonas fimi ATCC 484, Cellulomonas fimi DSM 20113, Cellulomonas fimi str. ATCC 484, Cellulomonas fimi strain ATCC 484
Server load: low (16%) [HD]