STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
ptsL_3PTS mannose transporter subunit IIAB; Catalyzes the phosphorylation of incoming sugar substrates concomitant with their translocation across the cell membrane; subunit IIA transfers a phosphoryl group to subunit IIB; subunit IIB transfers the phosphoryl group to the substrate; Derived by automated computational analysis using gene prediction method: Protein Homology. (322 aa)    
Predicted Functional Partners:
manY
PTS mannose transporter subunit IIC; Catalyzes the phosphorylation of incoming sugar substrates concomitant with their translocation across the cell membrane; the IIC domain forms the PTS system translocation channel and contains the specific substrate-binding site; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
 0.999
manZ_1-2
PTS mannose transporter subunit IID; Hosphoenolpyruvate-dependent sugar phosphotransferase system catalyzes the phosphorylation of incoming sugar substrates concomitant with their translocation across the cell membrane; IID with IIC forms the translocation channel; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
 0.999
ptsH
PTS sugar transporter; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
 0.998
ptsP
PTS fructose transporter subunit IIA; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the PEP-utilizing enzyme family.
  
 0.994
ANA31625.1
PTS system N-acetylgalactosamine-specific transporter subunit IID; Catalyzes the phosphorylation of incoming sugar substrates concomitant with their translocation across the cell membrane; protein IIA transfers a phosphoryl group to IIB which then transfers the phosphoryl group to the sugar; IID with IIC forms the translocation channel; involved in N-acetylgalactosamine transport; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
 0.993
agaC_2
PTS system N-acetylgalactosamine-specific transporter subunit IIC; Catalyzes the phosphorylation of incoming sugar substrates concomitant with their translocation across the cell membrane; protein IIA transfers a phosphoryl group to IIB which then transfers the phosphoryl group to the sugar; IIC forms the translocation channel for the sugar uptake;involved in N-acetylgalactosamine transport; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
 0.993
manZ_1
PTS system N-acetylgalactosamine-specific transporter subunit IID; Catalyzes the phosphorylation of incoming sugar substrates concomitant with their translocation across the cell membrane; protein IIA transfers a phosphoryl group to IIB which then transfers the phosphoryl group to the sugar; IID with IIC forms the translocation channel; involved in N-acetylgalactosamine transport; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
 0.993
agaC_1
PTS system N-acetylgalactosamine-specific transporter subunit IIC; Catalyzes the phosphorylation of incoming sugar substrates concomitant with their translocation across the cell membrane; protein IIA transfers a phosphoryl group to IIB which then transfers the phosphoryl group to the sugar; IIC forms the translocation channel for the sugar uptake;involved in N-acetylgalactosamine transport; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
 0.993
ANA29573.1
Mannose-6-phosphate isomerase; Catalyzes the formation of of fructose 6-phosphate from mannose 6-phosphate; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the mannose-6-phosphate isomerase type 1 family.
    
 0.991
ANA30330.1
PTS system fructose-specific transporter subunits IIBC; Phosphoenolpyruvate-dependent sugar phosphotransferase system; catalyzes the phosphorylation of incoming sugar substrates concomitant with their translocation across the cell membrane; IIB is phosphorylated by IIA and then transfers the phosphoryl group to the sugar; IIC forms the translocation channel; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
 
 0.987
Your Current Organism:
Salmonella enterica diarizonae
NCBI taxonomy Id: 59204
Other names: ATCC 43973, CCUG 30040, CIP 82.31, DSM 14847, NCTC 10060, S. enterica subsp. diarizonae, Salmonella cholerae-suis subsp. diarizonae, Salmonella choleraesuis subsp. diarizonae, Salmonella enterica IIIb, Salmonella enterica serovar IIIb, Salmonella enterica subsp. IIIb, Salmonella enterica subsp. Subsp. IIIb, Salmonella enterica subsp. diarizonae
Server load: low (26%) [HD]