STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
SEA46151.1Ribosomal protein L3 glutamine methyltransferase; Belongs to the protein N5-glutamine methyltransferase family. (309 aa)    
Predicted Functional Partners:
prfA
Peptide chain release factor 1; Peptide chain release factor 1 directs the termination of translation in response to the peptide chain termination codons UAG and UAA.
 
 
 0.965
dapE
Succinyldiaminopimelate desuccinylase; Catalyzes the hydrolysis of N-succinyl-L,L-diaminopimelic acid (SDAP), forming succinate and LL-2,6-diaminoheptanedioate (DAP), an intermediate involved in the bacterial biosynthesis of lysine and meso-diaminopimelic acid, an essential component of bacterial cell walls; Belongs to the peptidase M20A family. DapE subfamily.
 
  
 0.893
SEA46172.1
ATP-binding cassette, subfamily F, member 3.
  
   0.825
SEA46109.1
Twitching motility protein PilU.
       0.740
atpH
F-type H+-transporting ATPase subunit delta; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation.
  
   0.725
atpE
ATP synthase F0 subcomplex C subunit; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation.
  
   0.725
SEA74606.1
Ubiquinol-cytochrome c reductase cytochrome c1 subunit.
  
 
   0.703
atpG
ATP synthase F1 subcomplex gamma subunit; Produces ATP from ADP in the presence of a proton gradient across the membrane. The gamma chain is believed to be important in regulating ATPase activity and the flow of protons through the CF(0) complex.
  
   0.693
atpA
ATP synthase F1 subcomplex alpha subunit; Produces ATP from ADP in the presence of a proton gradient across the membrane. The alpha chain is a regulatory subunit.
  
   0.691
atpC
ATP synthase F1 subcomplex epsilon subunit; Produces ATP from ADP in the presence of a proton gradient across the membrane.
  
   0.667
Your Current Organism:
Acidovorax soli
NCBI taxonomy Id: 592050
Other names: A. soli, Acidovorax soli Choi et al. 2010, Acidovorax sp. BL21, DSM 25157, JCM 15909, KCTC 22399, strain BL21
Server load: low (20%) [HD]