STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
LIM2Lens fiber membrane intrinsic protein; Present in the thicker 16-17 nm junctions of mammalian lens fiber cells, where it may contribute to cell junctional organization. Acts as a receptor for calmodulin. May play an important role in both lens development and cataractogenesis; Belongs to the PMP-22/EMP/MP20 family. (215 aa)    
Predicted Functional Partners:
ATP6V0B
ATPase H+ transporting V0 subunit b; Belongs to the V-ATPase proteolipid subunit family.
  
 0.962
ATP6V0C
V-type proton ATPase proteolipid subunit; Proton-conducting pore forming subunit of the membrane integral V0 complex of vacuolar ATPase. V-ATPase is responsible for acidifying a variety of intracellular compartments in eukaryotic cells.
  
 0.962
ATP6V0D1
V-type proton ATPase subunit; Subunit of the integral membrane V0 complex of vacuolar ATPase. Vacuolar ATPase is responsible for acidifying a variety of intracellular compartments in eukaryotic cells, thus providing most of the energy required for transport processes in the vacuolar system. Belongs to the V-ATPase V0D/AC39 subunit family.
  
 0.960
ATP6V0D2
V-type proton ATPase subunit; Subunit of the integral membrane V0 complex of vacuolar ATPase. Vacuolar ATPase is responsible for acidifying a variety of intracellular compartments in eukaryotic cells, thus providing most of the energy required for transport processes in the vacuolar system. Belongs to the V-ATPase V0D/AC39 subunit family.
  
 0.960
ENSRROP00000017946
Uncharacterized protein.
  
 0.949
ATP6V1F
V-type proton ATPase subunit F; Subunit of the peripheral V1 complex of vacuolar ATPase essential for assembly or catalytic function. V-ATPase is responsible for acidifying a variety of intracellular compartments in eukaryotic cells.
  
 0.949
ATP6V1D
Uncharacterized protein.
  
 0.944
ENSRROP00000036293
Uncharacterized protein.
  
 0.944
ATP6V1H
V-type proton ATPase subunit H; Subunit of the peripheral V1 complex of vacuolar ATPase. Subunit H activates ATPase activity of the enzyme and couples ATPase activity to proton flow. Vacuolar ATPase is responsible for acidifying a variety of intracellular compartments in eukaryotic cells, thus providing most of the energy required for transport processes in the vacuolar system.
   
 0.942
CNST
Consortin, connexin sorting protein.
  
 0.928
Your Current Organism:
Rhinopithecus roxellana
NCBI taxonomy Id: 61622
Other names: Pygathrix roxellana, R. roxellana, golden snub-nosed monkey
Server load: low (14%) [HD]