STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
SGIP1SH3 domain GRB2 like endophilin interacting protein 1. (859 aa)    
Predicted Functional Partners:
ITSN2
Intersectin 2.
   
 0.991
ITSN1
Intersectin 1.
   
 0.917
LOC104674563
F-BAR domain-containing protein.
 
   
 0.878
EPS15
Epidermal growth factor receptor pathway substrate 15.
    
 0.847
AP2S1
AP complex subunit sigma; Belongs to the adaptor complexes small subunit family.
    
 0.845
AP2M1
AP-2 complex subunit mu; Component of the adaptor protein complex 2 (AP-2). Adaptor protein complexes function in protein transport via transport vesicles in different membrane traffic pathways. Adaptor protein complexes are vesicle coat components and appear to be involved in cargo selection and vesicle formation. AP-2 is involved in clathrin-dependent endocytosis in which cargo proteins are incorporated into vesicles surrounded by clathrin (clathrin-coated vesicles, CCVs) which are destined for fusion with the early endosome. The clathrin lattice serves as a mechanical scaffold but i [...]
   
 0.826
AP2A1
AP-2 complex subunit alpha; Component of the adaptor protein complex 2 (AP-2). Adaptor protein complexes function in protein transport via transport vesicles in different membrane traffic pathways. Adaptor protein complexes are vesicle coat components and appear to be involved in cargo selection and vesicle formation. AP-2 is involved in clathrin-dependent endocytosis in which cargo proteins are incorporated into vesicles surrounded by clathrin (clathrin-coated vesicles, CCVs) which are destined for fusion with the early endosome. The clathrin lattice serves as a mechanical scaffold bu [...]
   
 0.766
AP2A2
AP-2 complex subunit alpha; Component of the adaptor protein complex 2 (AP-2). Adaptor protein complexes function in protein transport via transport vesicles in different membrane traffic pathways. Adaptor protein complexes are vesicle coat components and appear to be involved in cargo selection and vesicle formation. AP-2 is involved in clathrin-dependent endocytosis in which cargo proteins are incorporated into vesicles surrounded by clathrin (clathrin-coated vesicles, CCVs) which are destined for fusion with the early endosome. The clathrin lattice serves as a mechanical scaffold bu [...]
    
 0.758
ENSRROP00000001972
B2-adapt-app_C domain-containing protein.
    
 0.706
AP1B1
AP complex subunit beta.
    
 0.706
Your Current Organism:
Rhinopithecus roxellana
NCBI taxonomy Id: 61622
Other names: Pygathrix roxellana, R. roxellana, golden snub-nosed monkey
Server load: low (22%) [HD]