STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
AKL13873.1Has endoribonuclease activity on mRNA; Derived by automated computational analysis using gene prediction method: Protein Homology. (128 aa)    
Predicted Functional Partners:
pyrI
Aspartate carbamoyltransferase regulatory subunit; Involved in allosteric regulation of aspartate carbamoyltransferase.
 
    0.892
pyrB
Aspartate carbamoyltransferase catalytic subunit; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the aspartate/ornithine carbamoyltransferase superfamily. ATCase family.
 
    0.838
ilvA
Threonine dehydratase; Catalyzes the anaerobic formation of alpha-ketobutyrate and ammonia from threonine in a two-step reaction. The first step involved a dehydration of threonine and a production of enamine intermediates (aminocrotonate), which tautomerizes to its imine form (iminobutyrate). Both intermediates are unstable and short-lived. The second step is the nonenzymatic hydrolysis of the enamine/imine intermediates to form 2- ketobutyrate and free ammonia. In the low water environment of the cell, the second step is accelerated by RidA.
 
 0.728
ilvH
Acetolactate synthase 3 regulatory subunit; With IlvI catalyzes the formation of 2-acetolactate from pyruvate, the small subunit is required for full activity and valine sensitivity; E.coli produces 3 isoenzymes of acetolactate synthase which differ in specificity to substrates, valine sensitivity and affinity for cofactors; also known as acetolactate synthase 3 small subunit; Derived by automated computational analysis using gene prediction method: Protein Homology.
    
  0.534
AKL14409.1
Acetolactate synthase 1 regulatory subunit; With IlvB catalyzes the formation of 2-acetolactate from pyruvate, the small subunit is required for full activity and valine sensitivity; E.coli produces 3 isoenzymes of acetolactate synthase which differ in specificity to substrates, valine sensitivity and affinity for cofactors; also known as acetolactate synthase small subunit; Derived by automated computational analysis using gene prediction method: Protein Homology.
    
  0.534
AKL14217.1
Acetolactate synthase catalytic subunit; Catalyzes the formation of 2-acetolactate from pyruvate; also known as acetolactate synthase large subunit; Derived by automated computational analysis using gene prediction method: Protein Homology.
    
  0.514
AKL14408.1
Acetolactate synthase catalytic subunit; Derived by automated computational analysis using gene prediction method: Protein Homology.
    
  0.514
ilvM
Acetolactate synthase 2 regulatory subunit; Derived by automated computational analysis using gene prediction method: Protein Homology.
     
  0.499
fusA
Elongation factor G; Catalyzes the GTP-dependent ribosomal translocation step during translation elongation. During this step, the ribosome changes from the pre-translocational (PRE) to the post-translocational (POST) state as the newly formed A-site-bound peptidyl-tRNA and P-site-bound deacylated tRNA move to the P and E sites, respectively. Catalyzes the coordinated movement of the two tRNA molecules, the mRNA and conformational changes in the ribosome; Belongs to the TRAFAC class translation factor GTPase superfamily. Classic translation factor GTPase family. EF-G/EF-2 subfamily.
   
  0.477
fusA-2
Elongation factor G; Catalyzes the GTP-dependent ribosomal translocation step during translation elongation. During this step, the ribosome changes from the pre-translocational (PRE) to the post-translocational (POST) state as the newly formed A-site-bound peptidyl-tRNA and P-site-bound deacylated tRNA move to the P and E sites, respectively. Catalyzes the coordinated movement of the two tRNA molecules, the mRNA and conformational changes in the ribosome; Belongs to the TRAFAC class translation factor GTPase superfamily. Classic translation factor GTPase family. EF-G/EF-2 subfamily.
   
  0.477
Your Current Organism:
Kluyvera intermedia
NCBI taxonomy Id: 61648
Other names: ATCC 33110, CCUG 14183, CIP 79.27, CUETM 77-130, DSM 4581, Enterobacter intermedium, Enterobacter intermedius, Enterobacter intrermedium, K. intermedia, Kluyvera cochleae, LMG 2785, LMG:2785, NBRC 102594, NCTC 12125, strain Gavini E 86
Server load: low (12%) [HD]