node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
AKL13029.1 | AKL14751.1 | AB182_17710 | AB182_27290 | Phosphoglucomutase; Catalyzes the interconversion of alpha-D-glucose 1-phosphate to alpha-D-glucose 6-phosphate; Derived by automated computational analysis using gene prediction method: Protein Homology. | Maltodextrin phosphorylase; Phosphorylase is an important allosteric enzyme in carbohydrate metabolism. Enzymes from different sources differ in their regulatory mechanisms and in their natural substrates. However, all known phosphorylases share catalytic and structural properties. | 0.721 |
AKL13029.1 | glgA | AB182_17710 | AB182_27285 | Phosphoglucomutase; Catalyzes the interconversion of alpha-D-glucose 1-phosphate to alpha-D-glucose 6-phosphate; Derived by automated computational analysis using gene prediction method: Protein Homology. | Glycogen synthase; Synthesizes alpha-1,4-glucan chains using ADP-glucose. | 0.424 |
AKL13029.1 | glgB | AB182_17710 | AB182_27270 | Phosphoglucomutase; Catalyzes the interconversion of alpha-D-glucose 1-phosphate to alpha-D-glucose 6-phosphate; Derived by automated computational analysis using gene prediction method: Protein Homology. | Glycogen branching protein; Catalyzes the formation of the alpha-1,6-glucosidic linkages in glycogen by scission of a 1,4-alpha-linked oligosaccharide from growing alpha-1,4-glucan chains and the subsequent attachment of the oligosaccharide to the alpha-1,6 position; Belongs to the glycosyl hydrolase 13 family. GlgB subfamily. | 0.978 |
AKL13029.1 | glgC | AB182_17710 | AB182_27280 | Phosphoglucomutase; Catalyzes the interconversion of alpha-D-glucose 1-phosphate to alpha-D-glucose 6-phosphate; Derived by automated computational analysis using gene prediction method: Protein Homology. | Glucose-1-phosphate adenylyltransferase; Involved in the biosynthesis of ADP-glucose, a building block required for the elongation reactions to produce glycogen. Catalyzes the reaction between ATP and alpha-D-glucose 1-phosphate (G1P) to produce pyrophosphate and ADP-Glc. | 0.426 |
AKL13029.1 | glgX | AB182_17710 | AB182_27275 | Phosphoglucomutase; Catalyzes the interconversion of alpha-D-glucose 1-phosphate to alpha-D-glucose 6-phosphate; Derived by automated computational analysis using gene prediction method: Protein Homology. | Glycogen debranching protein; Removes maltotriose and maltotetraose chains that are attached by 1,6-alpha-linkage to the limit dextrin main chain, generating a debranched limit dextrin. | 0.414 |
AKL14751.1 | AKL13029.1 | AB182_27290 | AB182_17710 | Maltodextrin phosphorylase; Phosphorylase is an important allosteric enzyme in carbohydrate metabolism. Enzymes from different sources differ in their regulatory mechanisms and in their natural substrates. However, all known phosphorylases share catalytic and structural properties. | Phosphoglucomutase; Catalyzes the interconversion of alpha-D-glucose 1-phosphate to alpha-D-glucose 6-phosphate; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.721 |
AKL14751.1 | glgA | AB182_27290 | AB182_27285 | Maltodextrin phosphorylase; Phosphorylase is an important allosteric enzyme in carbohydrate metabolism. Enzymes from different sources differ in their regulatory mechanisms and in their natural substrates. However, all known phosphorylases share catalytic and structural properties. | Glycogen synthase; Synthesizes alpha-1,4-glucan chains using ADP-glucose. | 0.985 |
AKL14751.1 | glgB | AB182_27290 | AB182_27270 | Maltodextrin phosphorylase; Phosphorylase is an important allosteric enzyme in carbohydrate metabolism. Enzymes from different sources differ in their regulatory mechanisms and in their natural substrates. However, all known phosphorylases share catalytic and structural properties. | Glycogen branching protein; Catalyzes the formation of the alpha-1,6-glucosidic linkages in glycogen by scission of a 1,4-alpha-linked oligosaccharide from growing alpha-1,4-glucan chains and the subsequent attachment of the oligosaccharide to the alpha-1,6 position; Belongs to the glycosyl hydrolase 13 family. GlgB subfamily. | 0.974 |
AKL14751.1 | glgC | AB182_27290 | AB182_27280 | Maltodextrin phosphorylase; Phosphorylase is an important allosteric enzyme in carbohydrate metabolism. Enzymes from different sources differ in their regulatory mechanisms and in their natural substrates. However, all known phosphorylases share catalytic and structural properties. | Glucose-1-phosphate adenylyltransferase; Involved in the biosynthesis of ADP-glucose, a building block required for the elongation reactions to produce glycogen. Catalyzes the reaction between ATP and alpha-D-glucose 1-phosphate (G1P) to produce pyrophosphate and ADP-Glc. | 0.961 |
AKL14751.1 | glgX | AB182_27290 | AB182_27275 | Maltodextrin phosphorylase; Phosphorylase is an important allosteric enzyme in carbohydrate metabolism. Enzymes from different sources differ in their regulatory mechanisms and in their natural substrates. However, all known phosphorylases share catalytic and structural properties. | Glycogen debranching protein; Removes maltotriose and maltotetraose chains that are attached by 1,6-alpha-linkage to the limit dextrin main chain, generating a debranched limit dextrin. | 0.798 |
AKL14751.1 | malQ | AB182_27290 | AB182_27330 | Maltodextrin phosphorylase; Phosphorylase is an important allosteric enzyme in carbohydrate metabolism. Enzymes from different sources differ in their regulatory mechanisms and in their natural substrates. However, all known phosphorylases share catalytic and structural properties. | 4-alpha-glucanotransferase; Amylomaltase; acts to release glucose from maltodextrins; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.567 |
atpA | atpC | AB182_25170 | AB182_25185 | ATP F0F1 synthase subunit alpha; Produces ATP from ADP in the presence of a proton gradient across the membrane. The alpha chain is a regulatory subunit. | ATP synthase F0F1 subunit epsilon; Produces ATP from ADP in the presence of a proton gradient across the membrane. | 0.999 |
atpA | atpE | AB182_25170 | AB182_25155 | ATP F0F1 synthase subunit alpha; Produces ATP from ADP in the presence of a proton gradient across the membrane. The alpha chain is a regulatory subunit. | ATP F0F1 synthase subunit C; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. | 0.999 |
atpA | atpG | AB182_25170 | AB182_25175 | ATP F0F1 synthase subunit alpha; Produces ATP from ADP in the presence of a proton gradient across the membrane. The alpha chain is a regulatory subunit. | ATP F0F1 synthase subunit gamma; Produces ATP from ADP in the presence of a proton gradient across the membrane. The gamma chain is believed to be important in regulating ATPase activity and the flow of protons through the CF(0) complex. | 0.999 |
atpA | glgB | AB182_25170 | AB182_27270 | ATP F0F1 synthase subunit alpha; Produces ATP from ADP in the presence of a proton gradient across the membrane. The alpha chain is a regulatory subunit. | Glycogen branching protein; Catalyzes the formation of the alpha-1,6-glucosidic linkages in glycogen by scission of a 1,4-alpha-linked oligosaccharide from growing alpha-1,4-glucan chains and the subsequent attachment of the oligosaccharide to the alpha-1,6 position; Belongs to the glycosyl hydrolase 13 family. GlgB subfamily. | 0.980 |
atpC | atpA | AB182_25185 | AB182_25170 | ATP synthase F0F1 subunit epsilon; Produces ATP from ADP in the presence of a proton gradient across the membrane. | ATP F0F1 synthase subunit alpha; Produces ATP from ADP in the presence of a proton gradient across the membrane. The alpha chain is a regulatory subunit. | 0.999 |
atpC | atpE | AB182_25185 | AB182_25155 | ATP synthase F0F1 subunit epsilon; Produces ATP from ADP in the presence of a proton gradient across the membrane. | ATP F0F1 synthase subunit C; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. | 0.999 |
atpC | atpG | AB182_25185 | AB182_25175 | ATP synthase F0F1 subunit epsilon; Produces ATP from ADP in the presence of a proton gradient across the membrane. | ATP F0F1 synthase subunit gamma; Produces ATP from ADP in the presence of a proton gradient across the membrane. The gamma chain is believed to be important in regulating ATPase activity and the flow of protons through the CF(0) complex. | 0.999 |
atpC | glgB | AB182_25185 | AB182_27270 | ATP synthase F0F1 subunit epsilon; Produces ATP from ADP in the presence of a proton gradient across the membrane. | Glycogen branching protein; Catalyzes the formation of the alpha-1,6-glucosidic linkages in glycogen by scission of a 1,4-alpha-linked oligosaccharide from growing alpha-1,4-glucan chains and the subsequent attachment of the oligosaccharide to the alpha-1,6 position; Belongs to the glycosyl hydrolase 13 family. GlgB subfamily. | 0.979 |
atpE | atpA | AB182_25155 | AB182_25170 | ATP F0F1 synthase subunit C; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. | ATP F0F1 synthase subunit alpha; Produces ATP from ADP in the presence of a proton gradient across the membrane. The alpha chain is a regulatory subunit. | 0.999 |