STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
glgBGlycogen branching protein; Catalyzes the formation of the alpha-1,6-glucosidic linkages in glycogen by scission of a 1,4-alpha-linked oligosaccharide from growing alpha-1,4-glucan chains and the subsequent attachment of the oligosaccharide to the alpha-1,6 position; Belongs to the glycosyl hydrolase 13 family. GlgB subfamily. (727 aa)    
Predicted Functional Partners:
glgC
Glucose-1-phosphate adenylyltransferase; Involved in the biosynthesis of ADP-glucose, a building block required for the elongation reactions to produce glycogen. Catalyzes the reaction between ATP and alpha-D-glucose 1-phosphate (G1P) to produce pyrophosphate and ADP-Glc.
  
 0.999
glgA
Glycogen synthase; Synthesizes alpha-1,4-glucan chains using ADP-glucose.
  
 0.998
malQ
4-alpha-glucanotransferase; Amylomaltase; acts to release glucose from maltodextrins; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
 0.985
glgX
Glycogen debranching protein; Removes maltotriose and maltotetraose chains that are attached by 1,6-alpha-linkage to the limit dextrin main chain, generating a debranched limit dextrin.
  
0.984
atpG
ATP F0F1 synthase subunit gamma; Produces ATP from ADP in the presence of a proton gradient across the membrane. The gamma chain is believed to be important in regulating ATPase activity and the flow of protons through the CF(0) complex.
    
 0.981
atpE
ATP F0F1 synthase subunit C; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation.
    
 0.980
atpA
ATP F0F1 synthase subunit alpha; Produces ATP from ADP in the presence of a proton gradient across the membrane. The alpha chain is a regulatory subunit.
   
  0.980
atpC
ATP synthase F0F1 subunit epsilon; Produces ATP from ADP in the presence of a proton gradient across the membrane.
    
  0.979
AKL13029.1
Phosphoglucomutase; Catalyzes the interconversion of alpha-D-glucose 1-phosphate to alpha-D-glucose 6-phosphate; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
  
 0.978
AKL14751.1
Maltodextrin phosphorylase; Phosphorylase is an important allosteric enzyme in carbohydrate metabolism. Enzymes from different sources differ in their regulatory mechanisms and in their natural substrates. However, all known phosphorylases share catalytic and structural properties.
 
 0.974
Your Current Organism:
Kluyvera intermedia
NCBI taxonomy Id: 61648
Other names: ATCC 33110, CCUG 14183, CIP 79.27, CUETM 77-130, DSM 4581, Enterobacter intermedium, Enterobacter intermedius, Enterobacter intrermedium, K. intermedia, Kluyvera cochleae, LMG 2785, LMG:2785, NBRC 102594, NCTC 12125, strain Gavini E 86
Server load: low (28%) [HD]