STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
glmUN-acetyl glucosamine-1-phosphate uridyltransferase; Catalyzes the last two sequential reactions in the de novo biosynthetic pathway for UDP-N-acetylglucosamine (UDP-GlcNAc). The C- terminal domain catalyzes the transfer of acetyl group from acetyl coenzyme A to glucosamine-1-phosphate (GlcN-1-P) to produce N- acetylglucosamine-1-phosphate (GlcNAc-1-P), which is converted into UDP-GlcNAc by the transfer of uridine 5-monophosphate (from uridine 5- triphosphate), a reaction catalyzed by the N-terminal domain. In the C-terminal section; belongs to the transferase hexapeptide repeat family. (456 aa)    
Predicted Functional Partners:
wecB
UDP-N-acetyl glucosamine-2-epimerase; Catalyzes the reversible epimerization at C-2 of UDP-N- acetylglucosamine (UDP-GlcNAc) and thereby provides bacteria with UDP- N-acetylmannosamine (UDP-ManNAc), the activated donor of ManNAc residues.
 
  
 0.976
mrsA
Putative phosphoglucomutase; Catalyzes the conversion of glucosamine-6-phosphate to glucosamine-1-phosphate; Belongs to the phosphohexose mutase family.
 
 
 0.974
glmS
L-glutamine:D-fructose-6-phosphate aminotransferase; Catalyzes the first step in hexosamine metabolism, converting fructose-6P into glucosamine-6P using glutamine as a nitrogen source.
  
 0.969
murA
UDP-N-glucosamine 1-carboxyvinyltransferase; Cell wall formation. Adds enolpyruvyl to UDP-N- acetylglucosamine; Belongs to the EPSP synthase family. MurA subfamily.
 
 
 0.952
prsA
Phosphoribosylpyrophosphate synthetase; Involved in the biosynthesis of the central metabolite phospho-alpha-D-ribosyl-1-pyrophosphate (PRPP) via the transfer of pyrophosphoryl group from ATP to 1-hydroxyl of ribose-5-phosphate (Rib- 5-P); Belongs to the ribose-phosphate pyrophosphokinase family. Class I subfamily.
 
  
 0.899
lpxA
UDP-N-acetylglucosamine acetyltransferase; Involved in the biosynthesis of lipid A, a phosphorylated glycolipid that anchors the lipopolysaccharide to the outer membrane of the cell.
  
 
 0.857
gmd
GDP-D-mannose dehydratase; Catalyzes the conversion of GDP-D-mannose to GDP-4-dehydro-6- deoxy-D-mannose; Belongs to the NAD(P)-dependent epimerase/dehydratase family. GDP-mannose 4,6-dehydratase subfamily.
     
 0.780
pta
Phosphotransacetylase; Involved in acetate metabolism; In the N-terminal section; belongs to the CobB/CobQ family.
  
 
 0.775
murE
Meso-diaminopimelate-adding enzyme; Catalyzes the addition of meso-diaminopimelic acid to the nucleotide precursor UDP-N-acetylmuramoyl-L-alanyl-D-glutamate (UMAG) in the biosynthesis of bacterial cell-wall peptidoglycan. Belongs to the MurCDEF family. MurE subfamily.
 
  
 0.751
yjjG
Putative phosphatase; Code: R; COG: COG1011.
     
 0.724
Your Current Organism:
Shigella flexneri
NCBI taxonomy Id: 198214
Other names: S. flexneri 2a str. 301, Shigella flexneri 2a str. 301, Shigella flexneri serotype 2a str. 301
Server load: low (30%) [HD]