STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
argSTIGRFAM: arginyl-tRNA synthetase; KEGG: drm:Dred_3183 arginyl-tRNA synthetase. (561 aa)    
Predicted Functional Partners:
guaA
GMP synthase, large subunit; Catalyzes the synthesis of GMP from XMP.
  
  
 0.979
metG
methionyl-tRNA synthetase; Is required not only for elongation of protein synthesis but also for the initiation of all mRNA translation through initiator tRNA(fMet) aminoacylation.
 
 0.973
ileS
isoleucyl-tRNA synthetase; Catalyzes the attachment of isoleucine to tRNA(Ile). As IleRS can inadvertently accommodate and process structurally similar amino acids such as valine, to avoid such errors it has two additional distinct tRNA(Ile)-dependent editing activities. One activity is designated as 'pretransfer' editing and involves the hydrolysis of activated Val-AMP. The other activity is designated 'posttransfer' editing and involves deacylation of mischarged Val-tRNA(Ile). Belongs to the class-I aminoacyl-tRNA synthetase family. IleS type 1 subfamily.
 
 0.971
gltX
glutamyl-tRNA synthetase; Catalyzes the attachment of glutamate to tRNA(Glu) in a two- step reaction: glutamate is first activated by ATP to form Glu-AMP and then transferred to the acceptor end of tRNA(Glu).
 
 0.970
proS
prolyl-tRNA synthetase; Catalyzes the attachment of proline to tRNA(Pro) in a two- step reaction: proline is first activated by ATP to form Pro-AMP and then transferred to the acceptor end of tRNA(Pro). As ProRS can inadvertently accommodate and process non-cognate amino acids such as alanine and cysteine, to avoid such errors it has two additional distinct editing activities against alanine. One activity is designated as 'pretransfer' editing and involves the tRNA(Pro)-independent hydrolysis of activated Ala-AMP. The other activity is designated 'posttransfer' editing and involves dea [...]
  
 0.962
leuS
KEGG: pth:PTH_0839 leucyl-tRNA synthetase; TIGRFAM: leucyl-tRNA synthetase; Belongs to the class-I aminoacyl-tRNA synthetase family.
  
 0.946
ADG83757.1
PFAM: Domain of unknown function DUF1934; KEGG: chy:CHY_0123 hypothetical protein.
  
    0.912
lysS
KEGG: chy:CHY_2365 lysyl-tRNA synthetase; TIGRFAM: lysyl-tRNA synthetase; PFAM: tRNA synthetase class II (D K and N); nucleic acid binding OB-fold tRNA/helicase-type; Belongs to the class-II aminoacyl-tRNA synthetase family.
  
 0.899
pyrG
CTP synthase; Catalyzes the ATP-dependent amination of UTP to CTP with either L-glutamine or ammonia as the source of nitrogen. Regulates intracellular CTP levels through interactions with the four ribonucleotide triphosphates.
  
  
 0.892
pheT
KEGG: drm:Dred_1620 phenylalanyl-tRNA synthetase, beta subunit; TIGRFAM: phenylalanyl-tRNA synthetase, beta subunit.
  
  
 0.885
Your Current Organism:
Thermincola potens
NCBI taxonomy Id: 635013
Other names: T. potens JR, Thermincola potens JR, Thermincola potens str. JR, Thermincola potens strain JR, Thermincola sp. JR
Server load: low (14%) [HD]