STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
aroCChorismate synthase; Catalyzes the anti-1,4-elimination of the C-3 phosphate and the C-6 proR hydrogen from 5-enolpyruvylshikimate-3-phosphate (EPSP) to yield chorismate, which is the branch point compound that serves as the starting substrate for the three terminal pathways of aromatic amino acid biosynthesis. This reaction introduces a second double bond into the aromatic ring system. (361 aa)    
Predicted Functional Partners:
aroA
3-phosphoshikimate 1-carboxyvinyltransferase; Catalyzes the transfer of the enolpyruvyl moiety of phosphoenolpyruvate (PEP) to the 5-hydroxyl of shikimate-3-phosphate (S3P) to produce enolpyruvyl shikimate-3-phosphate and inorganic phosphate.
 
 0.996
tyrA
Chorismate mutase; Catalyzes the formation of prephenate from chorismate and the formation of 4-hydroxyphenylpyruvate from prephenate in tyrosine biosynthesis; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
 
 0.990
nifJ-2
Pyruvate-flavodoxin oxidoreductase; Derived by automated computational analysis using gene prediction method: Protein Homology.
   
 
 0.989
aroB
3-dehydroquinate synthase; Catalyzes the conversion of 3-deoxy-D-arabino-heptulosonate 7-phosphate (DAHP) to dehydroquinate (DHQ).
  
 0.988
mepA
Murein endopeptidase; Murein endopeptidase that cleaves the D-alanyl-meso-2,6- diamino-pimelyl amide bond that connects peptidoglycan strands. Likely plays a role in the removal of murein from the sacculus.
 
  
 0.987
nifJ
Pyruvate-flavodoxin oxidoreductase; Derived by automated computational analysis using gene prediction method: Protein Homology.
   
 
 0.986
pheA
Chorismate mutase; Catalyzing the formation of prephenate from chorismate and the formation of phenylpyruvate from prephenate in phenylalanine biosynthesis; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
  
 0.927
AKH89305.1
Anthranilate synthase subunit II; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
 0.899
aroK
Shikimate kinase; Catalyzes the specific phosphorylation of the 3-hydroxyl group of shikimic acid using ATP as a cosubstrate; Belongs to the shikimate kinase family.
 
  
 0.882
aroE
Shikimate dehydrogenase; Involved in the biosynthesis of the chorismate, which leads to the biosynthesis of aromatic amino acids. Catalyzes the reversible NADPH linked reduction of 3-dehydroshikimate (DHSA) to yield shikimate (SA).
 
  
 0.850
Your Current Organism:
Edwardsiella tarda
NCBI taxonomy Id: 636
Other names: ATCC 15947, ATCC 23656, CIP 78.61, DSM 30052, E. tarda, Edwardsiella anguillimortifera, Edwardsiella sp. HMK1, Edwardsiella sp. PB46, LMG 2793, LMG:2793, NBRC 105688, NCCB 73021, NCTC 10396, Paracolobactrum anguillimortiferum
Server load: low (16%) [HD]