STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
AKH88575.1Hypothetical protein; Required for morphogenesis under gluconeogenic growth conditions; Belongs to the gluconeogenesis factor family. (302 aa)    
Predicted Functional Partners:
rapZ
glmZ(sRNA)-inactivating NTPase; Modulates the synthesis of GlmS, by affecting the processing and stability of the regulatory small RNA GlmZ. When glucosamine-6- phosphate (GlcN6P) concentrations are high in the cell, RapZ binds GlmZ and targets it to cleavage by RNase E. Consequently, GlmZ is inactivated and unable to activate GlmS synthesis. Under low GlcN6P concentrations, RapZ is sequestered and inactivated by an other regulatory small RNA, GlmY, preventing GlmZ degradation and leading to synthesis of GlmS; Belongs to the RapZ-like family. RapZ subfamily.
  
  
 0.836
ribD
5-amino-6-(5-phosphoribosylamino)uracil reductase; Converts 2,5-diamino-6-(ribosylamino)-4(3h)-pyrimidinone 5'- phosphate into 5-amino-6-(ribosylamino)-2,4(1h,3h)-pyrimidinedione 5'- phosphate; In the C-terminal section; belongs to the HTP reductase family.
     
 0.662
glmU
Glucosamine-1-phosphate N-acetyltransferase; Catalyzes the last two sequential reactions in the de novo biosynthetic pathway for UDP-N-acetylglucosamine (UDP-GlcNAc). The C- terminal domain catalyzes the transfer of acetyl group from acetyl coenzyme A to glucosamine-1-phosphate (GlcN-1-P) to produce N- acetylglucosamine-1-phosphate (GlcNAc-1-P), which is converted into UDP-GlcNAc by the transfer of uridine 5-monophosphate (from uridine 5- triphosphate), a reaction catalyzed by the N-terminal domain.
 
   
 0.655
topA
DNA topoisomerase I; Releases the supercoiling and torsional tension of DNA, which is introduced during the DNA replication and transcription, by transiently cleaving and rejoining one strand of the DNA duplex. Introduces a single-strand break via transesterification at a target site in duplex DNA. The scissile phosphodiester is attacked by the catalytic tyrosine of the enzyme, resulting in the formation of a DNA- (5'-phosphotyrosyl)-enzyme intermediate and the expulsion of a 3'-OH DNA strand. The free DNA strand then undergoes passage around the unbroken strand, thus removing DNA supe [...]
   
   0.524
metG
methionine--tRNA ligase; Is required not only for elongation of protein synthesis but also for the initiation of all mRNA translation through initiator tRNA(fMet) aminoacylation.
       0.507
nifJ-2
Pyruvate-flavodoxin oxidoreductase; Derived by automated computational analysis using gene prediction method: Protein Homology.
       0.502
arnA
UDP-4-amino-4-deoxy-L-arabinose formyltransferase; Bifunctional enzyme that catalyzes the oxidative decarboxylation of UDP-glucuronic acid (UDP-GlcUA) to UDP-4-keto- arabinose (UDP-Ara4O) and the addition of a formyl group to UDP-4- amino-4-deoxy-L-arabinose (UDP-L-Ara4N) to form UDP-L-4-formamido- arabinose (UDP-L-Ara4FN). The modified arabinose is attached to lipid A and is required for resistance to polymyxin and cationic antimicrobial peptides; In the N-terminal section; belongs to the Fmt family. UDP- L-Ara4N formyltransferase subfamily.
  
    0.484
hisI
phosphoribosyl-ATP pyrophosphatase; Catalyzes the formation of 1-(5-phosphoribosyl)-AMP from 1-(5-phosphoribosyl)-ATP and the subsequent formation of 1-(5-phosphoribosyl)-5-((5- phosphoribosylamino)methylideneamino)imidazole-4- carboxamide from 1-(5-phosphoribosyl)-AMP in histidine biosynthesis; Derived by automated computational analysis using gene prediction method: Protein Homology; In the N-terminal section; belongs to the PRA-CH family.
       0.473
ptsP
PTS fructose transporter subunit IIA; Phosphotransferase system, enzyme I; transfers the phosphoryl group from phosphoenolpyruvate (PEP) to the phosphoryl carrier protein HPr; HPr transfers the phosphoryl group to subunit A; subunit IIA transfers a phosphoryl group to subunit IIB; subunit IIB transfers the phosphoryl group to the substrate; part of the phosphoenolpyruvate-dependent sugar phosphotransferase system (PTS), a major carbohydrate active-transport system; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
  
 0.460
ftsW
Cell division protein FtsW; Peptidoglycan polymerase that is essential for cell division. Belongs to the SEDS family. FtsW subfamily.
 
     0.459
Your Current Organism:
Edwardsiella tarda
NCBI taxonomy Id: 636
Other names: ATCC 15947, ATCC 23656, CIP 78.61, DSM 30052, E. tarda, Edwardsiella anguillimortifera, Edwardsiella sp. HMK1, Edwardsiella sp. PB46, LMG 2793, LMG:2793, NBRC 105688, NCCB 73021, NCTC 10396, Paracolobactrum anguillimortiferum
Server load: low (10%) [HD]