STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
greAGreA/GreB family elongation factor; Necessary for efficient RNA polymerase transcription elongation past template-encoded arresting sites. The arresting sites in DNA have the property of trapping a certain fraction of elongating RNA polymerases that pass through, resulting in locked ternary complexes. Cleavage of the nascent transcript by cleavage factors such as GreA or GreB allows the resumption of elongation from the new 3'terminus. GreA releases sequences of 2 to 3 nucleotides. (152 aa)    
Predicted Functional Partners:
rpoC
DNA-directed RNA polymerase, beta' subunit; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates.
  
 
 0.931
rpoA
DNA-directed RNA polymerase, alpha subunit; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates.
 
 
 0.926
rpoB
DNA-directed RNA polymerase, beta subunit; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates.
  
 
 0.913
rpoZ
DNA-directed RNA polymerase, omega subunit; Promotes RNA polymerase assembly. Latches the N- and C- terminal regions of the beta' subunit thereby facilitating its interaction with the beta and alpha subunits.
 
 
 
 0.894
rplQ
KEGG: azc:AZC_2529 ribosomal protein L17; TIGRFAM: ribosomal protein L17; PFAM: ribosomal protein L17.
 
  
 0.765
Snov_2358
PFAM: glycosyl transferase group 1; KEGG: rhi:NGR_c15710 lipopolysaccharide core biosynthesis mannosyltransferase LpsB.
     
 0.717
rpoD
RNA polymerase, sigma 70 subunit, RpoD; Sigma factors are initiation factors that promote the attachment of RNA polymerase to specific initiation sites and are then released. This sigma factor is the primary sigma factor during exponential growth.
 
   
 0.703
carB
KEGG: azc:AZC_1145 carbamoyl-phosphate synthase large subunit; TIGRFAM: carbamoyl-phosphate synthase, large subunit; PFAM: Carbamoyl-phosphate synthase L chain ATP-binding; Carbamoyl-phosphate synthetase large chain domain protein; Carbamoyl-phosphate synthetase large chain oligomerisation; MGS domain protein; Belongs to the CarB family.
 
  
 0.672
nusG
NusG antitermination factor; Participates in transcription elongation, termination and antitermination.
 
  
 0.638
pnp
Polyribonucleotide nucleotidyltransferase; Involved in mRNA degradation. Catalyzes the phosphorolysis of single-stranded polyribonucleotides processively in the 3'- to 5'- direction.
  
  
 0.607
Your Current Organism:
Starkeya novella
NCBI taxonomy Id: 639283
Other names: S. novella DSM 506, Starkeya novella DSM 506, Starkeya novella IAM 12100, Starkeya novella str. DSM 506, Starkeya novella strain DSM 506
Server load: low (22%) [HD]