STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
Dsui_0509TIGRFAM: MauM/NapG family ferredoxin-type protein. (326 aa)    
Predicted Functional Partners:
Dsui_3030
NADH:ubiquinone oxidoreductase, NADH-binding (51 kD) subunit; PFAM: NADH-ubiquinone oxidoreductase-F iron-sulfur binding region; Respiratory-chain NADH dehydrogenase 24 Kd subunit; Respiratory-chain NADH dehydrogenase 51 Kd subunit.
  
 0.999
Dsui_0511
Nitrate reductase cytochrome c-type subunit; Electron transfer subunit of the periplasmic nitrate reductase complex NapAB; Belongs to the NapB family.
 
  
 0.993
Dsui_0510
TIGRFAM: ferredoxin-type protein, NapH/MauN family.
 
 0.988
napD
Uncharacterized protein involved in formation of periplasmic nitrate reductase; Chaperone for NapA, the catalytic subunit of the periplasmic nitrate reductase. It binds directly and specifically to the twin- arginine signal peptide of NapA, preventing premature interaction with the Tat translocase and premature export.
 
  
 0.985
napA
Periplasmic nitrate reductase, large subunit; Catalytic subunit of the periplasmic nitrate reductase complex NapAB. Receives electrons from NapB and catalyzes the reduction of nitrate to nitrite.
 
 
 0.982
nuoC
NADH/F420H2 dehydrogenase, subunit C; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I 30 kDa subunit family.
  
 0.978
nuoA
NADH:ubiquinone oxidoreductase subunit 3 (chain A); NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 3 family.
  
 0.974
nuoN
Proton-translocating NADH-quinone oxidoreductase, chain N; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 2 family.
  
 0.973
nuoH
NADH:ubiquinone oxidoreductase subunit 1 (chain H); NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. This subunit may bind ubiquinone.
  
 0.971
Dsui_3038
Proton-translocating NADH-quinone oxidoreductase, chain M; PFAM: NADH-Ubiquinone/plastoquinone (complex I), various chains; NADH-ubiquinone oxidoreductase chain 4, amino terminus; TIGRFAM: proton-translocating NADH-quinone oxidoreductase, chain M.
  
 0.967
Your Current Organism:
Azospira oryzae
NCBI taxonomy Id: 640081
Other names: A. oryzae PS, Azospira oryzae PS, Dechlorosoma suillum PS, Dechlorosoma suillum str. PS, Dechlorosoma suillum strain PS
Server load: low (20%) [HD]