STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
groS10 kDa chaperonin; Binds to Cpn60 in the presence of Mg-ATP and suppresses the ATPase activity of the latter. (94 aa)    
Predicted Functional Partners:
groL
60 kDa chaperonin; Prevents misfolding and promotes the refolding and proper assembly of unfolded polypeptides generated under stress conditions.
 
 0.999
grpE
Protein grpE; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins, in association with DnaK and GrpE. It is the nucleotide exchange factor for DnaK and may function as a thermosensor. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP-dependent i [...]
  
 
 0.974
dnaK
Chaperone protein dnaK; Acts as a chaperone; Belongs to the heat shock protein 70 family.
 
 
 0.945
htpG
Chaperone protein htpG; Molecular chaperone. Has ATPase activity.
   
 
 0.898
Sgly_1848
Plasmid segregation actin-type ATPase ParM; KEGG: dhd:Dhaf_3280 hypothetical protein; SPTR: Putative uncharacterized protein.
  
 
 0.876
clpP
ATP-dependent Clp protease proteolytic subunit ClpP; Cleaves peptides in various proteins in a process that requires ATP hydrolysis. Has a chymotrypsin-like activity. Plays a major role in the degradation of misfolded proteins. Belongs to the peptidase S14 family.
 
 
 0.866
hslU
ATP-dependent hsl protease ATP-binding subunit hslU; ATPase subunit of a proteasome-like degradation complex; this subunit has chaperone activity. The binding of ATP and its subsequent hydrolysis by HslU are essential for unfolding of protein substrates subsequently hydrolyzed by HslV. HslU recognizes the N-terminal part of its protein substrates and unfolds these before they are guided to HslV for hydrolysis.
   
  
 0.831
hslV
ATP dependent peptidase CodWX, CodW component; Protease subunit of a proteasome-like degradation complex believed to be a general protein degrading machinery.
   
  
 0.825
rplL
LSU ribosomal protein L12P; Forms part of the ribosomal stalk which helps the ribosome interact with GTP-bound translation factors. Is thus essential for accurate translation; Belongs to the bacterial ribosomal protein bL12 family.
  
  
 0.795
Sgly_1823
COGs: COG0484 DnaJ-class molecular chaperone with C-terminal Zn finger domain; InterPro IPR001623: IPR002939; KEGG: rrs:RoseRS_3094 chaperone DnaJ domain-containing protein; PFAM: Chaperone DnaJ, C-terminal; Heat shock protein DnaJ, N-terminal; SMART: Heat shock protein DnaJ, N-terminal; SPTR: Chaperone DnaJ domain protein; PFAM: DnaJ domain; DnaJ C terminal region.
 
 
 0.772
Your Current Organism:
Syntrophobotulus glycolicus
NCBI taxonomy Id: 645991
Other names: S. glycolicus DSM 8271, Syntrophobotulus glycolicus DSM 8271, Syntrophobotulus glycolicus str. DSM 8271, Syntrophobotulus glycolicus strain DSM 8271
Server load: low (22%) [HD]