node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
SED58475.1 | SED59516.1 | SAMN04488554_0204 | SAMN04488554_0226 | Ferredoxin-NADP reductase. | NADH dehydrogenase subunit M. | 0.999 |
SED58475.1 | SEE12049.1 | SAMN04488554_0204 | SAMN04488554_1574 | Ferredoxin-NADP reductase. | Protein tyrosine/serine phosphatase. | 0.966 |
SED58475.1 | SEE98136.1 | SAMN04488554_0204 | SAMN04488554_4087 | Ferredoxin-NADP reductase. | Sulfate permease, SulP family. | 0.440 |
SED58475.1 | nuoA | SAMN04488554_0204 | SAMN04488554_0214 | Ferredoxin-NADP reductase. | NADH dehydrogenase subunit A; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be a menaquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 3 family. | 0.996 |
SED58475.1 | nuoB | SAMN04488554_0204 | SAMN04488554_0215 | Ferredoxin-NADP reductase. | NADH dehydrogenase subunit B; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be a menaquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. | 0.994 |
SED58475.1 | nuoD | SAMN04488554_0204 | SAMN04488554_0217 | Ferredoxin-NADP reductase. | NADH dehydrogenase subunit D; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be a menaquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I 49 kDa subunit family. | 0.998 |
SED58475.1 | nuoH | SAMN04488554_0204 | SAMN04488554_0221 | Ferredoxin-NADP reductase. | NADH dehydrogenase subunit H; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. This subunit may bind ubiquinone. | 0.994 |
SED58475.1 | nuoI | SAMN04488554_0204 | SAMN04488554_0222 | Ferredoxin-NADP reductase. | NADH dehydrogenase subunit I; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. | 0.998 |
SED59516.1 | SED58475.1 | SAMN04488554_0226 | SAMN04488554_0204 | NADH dehydrogenase subunit M. | Ferredoxin-NADP reductase. | 0.999 |
SED59516.1 | SEE12049.1 | SAMN04488554_0226 | SAMN04488554_1574 | NADH dehydrogenase subunit M. | Protein tyrosine/serine phosphatase. | 0.999 |
SED59516.1 | SEE98136.1 | SAMN04488554_0226 | SAMN04488554_4087 | NADH dehydrogenase subunit M. | Sulfate permease, SulP family. | 0.912 |
SED59516.1 | nuoA | SAMN04488554_0226 | SAMN04488554_0214 | NADH dehydrogenase subunit M. | NADH dehydrogenase subunit A; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be a menaquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 3 family. | 0.999 |
SED59516.1 | nuoB | SAMN04488554_0226 | SAMN04488554_0215 | NADH dehydrogenase subunit M. | NADH dehydrogenase subunit B; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be a menaquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. | 0.999 |
SED59516.1 | nuoD | SAMN04488554_0226 | SAMN04488554_0217 | NADH dehydrogenase subunit M. | NADH dehydrogenase subunit D; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be a menaquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I 49 kDa subunit family. | 0.999 |
SED59516.1 | nuoH | SAMN04488554_0226 | SAMN04488554_0221 | NADH dehydrogenase subunit M. | NADH dehydrogenase subunit H; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. This subunit may bind ubiquinone. | 0.999 |
SED59516.1 | nuoI | SAMN04488554_0226 | SAMN04488554_0222 | NADH dehydrogenase subunit M. | NADH dehydrogenase subunit I; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. | 0.999 |
SEE12013.1 | SEE12049.1 | SAMN04488554_1573 | SAMN04488554_1574 | DNA-binding transcriptional regulator, AcrR family. | Protein tyrosine/serine phosphatase. | 0.952 |
SEE12049.1 | SED58475.1 | SAMN04488554_1574 | SAMN04488554_0204 | Protein tyrosine/serine phosphatase. | Ferredoxin-NADP reductase. | 0.966 |
SEE12049.1 | SED59516.1 | SAMN04488554_1574 | SAMN04488554_0226 | Protein tyrosine/serine phosphatase. | NADH dehydrogenase subunit M. | 0.999 |
SEE12049.1 | SEE12013.1 | SAMN04488554_1574 | SAMN04488554_1573 | Protein tyrosine/serine phosphatase. | DNA-binding transcriptional regulator, AcrR family. | 0.952 |