STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
ycf3Tetratricopeptide TPR_1 repeat-containing protein; Seems to be required for the assembly of the photosystem I complex; Belongs to the Ycf3 family. (173 aa)    
Predicted Functional Partners:
ycf4
Photosystem I assembly Ycf4; Seems to be required for the assembly of the photosystem I complex; Belongs to the Ycf4 family.
  
   
 0.853
psbE
Cytochrome b559, alpha subunit; This b-type cytochrome is tightly associated with the reaction center of photosystem II (PSII). PSII is a light-driven water:plastoquinone oxidoreductase that uses light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation. It consists of a core antenna complex that captures photons, and an electron transfer chain that converts photonic excitation into a charge separation.
  
   
 0.853
psaA
Photosystem I core protein PsaA; PsaA and PsaB bind P700, the primary electron donor of photosystem I (PSI), as well as the electron acceptors A0, A1 and FX. PSI is a plastocyanin/cytochrome c6-ferredoxin oxidoreductase, converting photonic excitation into a charge separation, which transfers an electron from the donor P700 chlorophyll pair to the spectroscopically characterized acceptors A0, A1, FX, FA and FB in turn. Oxidized P700 is reduced on the lumenal side of the thylakoid membrane by plastocyanin or cytochrome c6; Belongs to the PsaA/PsaB family.
  
   
 0.849
petD
Cytb6/f complex subunit IV; Component of the cytochrome b6-f complex, which mediates electron transfer between photosystem II (PSII) and photosystem I (PSI), cyclic electron flow around PSI, and state transitions.
  
   
 0.840
psbC
Photosystem II 44 kDa subunit reaction center protein; One of the components of the core complex of photosystem II (PSII). It binds chlorophyll and helps catalyze the primary light- induced photochemical processes of PSII. PSII is a light-driven water:plastoquinone oxidoreductase, using light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation; Belongs to the PsbB/PsbC family. PsbC subfamily.
  
   
 0.775
psbH
Photosystem II phosphoprotein PsbH; One of the components of the core complex of photosystem II (PSII), required for its stability and/or assembly. PSII is a light- driven water:plastoquinone oxidoreductase that uses light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation. It consists of a core antenna complex that captures photons, and an electron transfer chain that converts photonic excitation into a charge separation.
  
   
 0.773
psaB
Photosystem I core protein PsaB; PsaA and PsaB bind P700, the primary electron donor of photosystem I (PSI), as well as the electron acceptors A0, A1 and FX. PSI is a plastocyanin/cytochrome c6-ferredoxin oxidoreductase, converting photonic excitation into a charge separation, which transfers an electron from the donor P700 chlorophyll pair to the spectroscopically characterized acceptors A0, A1, FX, FA and FB in turn. Oxidized P700 is reduced on the lumenal side of the thylakoid membrane by plastocyanin or cytochrome c6; Belongs to the PsaA/PsaB family.
  
   
 0.772
psbA-3
Photosystem q(b) protein; Photosystem II (PSII) is a light-driven water:plastoquinone oxidoreductase that uses light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation. It consists of a core antenna complex that captures photons, and an electron transfer chain that converts photonic excitation into a charge separation. The D1/D2 (PsbA/PsbA) reaction center heterodimer binds P680, the primary electron donor of PSII as well as several subsequent electron acceptors.
  
     0.771
psbA
Photosystem q(b) protein; Photosystem II (PSII) is a light-driven water:plastoquinone oxidoreductase that uses light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation. It consists of a core antenna complex that captures photons, and an electron transfer chain that converts photonic excitation into a charge separation. The D1/D2 (PsbA/PsbA) reaction center heterodimer binds P680, the primary electron donor of PSII as well as several subsequent electron acceptors.
  
     0.770
AFZ45698.1
PFAM: Photosystem II protein; TIGRFAM: chlorophyll a/b binding light-harvesting protein; InterPro IPR000932:IPR000169; KEGG: ana:all4003 hypothetical protein; PFAM: photosystem antenna family protein; SPTR: Putative uncharacterized protein.
  
     0.770
Your Current Organism:
Halothece sp. PCC7418
NCBI taxonomy Id: 65093
Other names: Aphanothece halophytica 7418, Cyanothece sp. PCC 7418, H. sp. PCC 7418, Halothece sp. PCC 7418, Synechococcus sp. ATCC 29534 (no longer available), Synechococcus sp. PCC 7418
Server load: low (30%) [HD]