STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
AMQ44921.1Acetolactate synthase catalytic subunit; Catalyzes the formation of 2-acetolactate from pyruvate; also known as acetolactate synthase large subunit; Derived by automated computational analysis using gene prediction method: Protein Homology. (548 aa)    
Predicted Functional Partners:
ilvH
Acetolactate synthase 3 regulatory subunit; With IlvI catalyzes the formation of 2-acetolactate from pyruvate, the small subunit is required for full activity and valine sensitivity; E.coli produces 3 isoenzymes of acetolactate synthase which differ in specificity to substrates, valine sensitivity and affinity for cofactors; also known as acetolactate synthase 3 small subunit; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
 0.998
ilvC
Ketol-acid reductoisomerase; Involved in the biosynthesis of branched-chain amino acids (BCAA). Catalyzes an alkyl-migration followed by a ketol-acid reduction of (S)-2-acetolactate (S2AL) to yield (R)-2,3-dihydroxy-isovalerate. In the isomerase reaction, S2AL is rearranged via a Mg-dependent methyl migration to produce 3-hydroxy-3-methyl-2-ketobutyrate (HMKB). In the reductase reaction, this 2-ketoacid undergoes a metal-dependent reduction by NADPH to yield (R)-2,3-dihydroxy-isovalerate.
 
 
 0.988
AMQ44920.1
Acetolactate synthase; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
 0.986
leuB
3-isopropylmalate dehydrogenase; Catalyzes the oxidation of 3-carboxy-2-hydroxy-4- methylpentanoate (3-isopropylmalate) to 3-carboxy-4-methyl-2- oxopentanoate. The product decarboxylates to 4-methyl-2 oxopentanoate.
 
 0.983
budA
Alpha-acetolactate decarboxylase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the alpha-acetolactate decarboxylase family.
  
 
 0.972
leuA
2-isopropylmalate synthase; Catalyzes the condensation of the acetyl group of acetyl-CoA with 3-methyl-2-oxobutanoate (2-oxoisovalerate) to form 3-carboxy-3- hydroxy-4-methylpentanoate (2-isopropylmalate); Belongs to the alpha-IPM synthase/homocitrate synthase family. LeuA type 1 subfamily.
 
 
 0.971
ilvD
Dihydroxy-acid dehydratase; Catalyzes the dehydration of 2,3-dihydroxy-3-methylbutanoate to 3-methyl-2-oxobutanoate in valine and isoleucine biosynthesis; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the IlvD/Edd family.
  
 0.968
ilvA
Threonine dehydratase; Catalyzes the anaerobic formation of alpha-ketobutyrate and ammonia from threonine in a two-step reaction. The first step involved a dehydration of threonine and a production of enamine intermediates (aminocrotonate), which tautomerizes to its imine form (iminobutyrate). Both intermediates are unstable and short-lived. The second step is the nonenzymatic hydrolysis of the enamine/imine intermediates to form 2- ketobutyrate and free ammonia. In the low water environment of the cell, the second step is accelerated by RidA.
 
 0.967
AMQ42224.1
Threonine dehydratase; Catalyzes the formation of 2-oxobutanoate from L-threonine; catabolic; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
 0.941
ilvE
Branched-chain amino acid aminotransferase; Acts on leucine, isoleucine and valine. Belongs to the class-IV pyridoxal-phosphate-dependent aminotransferase family.
 
 
 0.927
Your Current Organism:
Aeromonas veronii
NCBI taxonomy Id: 654
Other names: A. veronii, ATCC 35624, ATCC 49904 [[Aeromonas ichthiosmia]], Aeromonas culicicola, Aeromonas culicicola Pidiyar et al. 2002, Aeromonas hybridization group 10 (HG10), Aeromonas ichthiosmia, Aeromonas sp. G18, Aeromonas sp. R1, Aeromonas sp. R9, Aeromonas sp. TH074, Aeromonas sp. TH076, CCUG 27821, CECT 4257, CECT 4486 [[Aeromonas ichthiosmia]], CIP 103438, CIP 104613 [[Aeromonas ichthiosmia]], CIP 107763 [[Aeromonas culicicola]], DSM 6393 [[Aeromonas ichthiosmia]], DSM 7386, Enteric Group 77, JCM 7375, JCM 8354 [[Aeromonas ichthiosmia]], LMG 12645 [[Aeromonas ichthiosmia]], LMG:12645 [[Aeromonas ichthiosmia]], MTCC 3249 [[Aeromonas culicicola]], NCIMB 13205 [[Aeromonas ichthiosmia]], NICM 5147 [[Aeromonas culicicola]], strain 115/II [[Aeromonas ichthiosmia]]
Server load: low (18%) [HD]