STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
KKF37492.1Catalyzes the formation of inosine monophosphate from hypoxanthine and 5-phospho-alpha-D-ribose 1-diphosphate; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the purine/pyrimidine phosphoribosyltransferase family. (184 aa)    
Predicted Functional Partners:
deoD
Purine nucleoside phosphorylase; Catalyzes the reversible phosphorolysis of ribonucleosides and 2'- deoxyribonucleosides to the free base and (2'-deoxy)ribose-1- phosphate; Derived by automated computational analysis using gene prediction method: Protein Homology.
     
 0.974
guaA
GMP synthase; Catalyzes the synthesis of GMP from XMP.
  
 
 0.970
ppnP
Hypothetical protein; Catalyzes the phosphorolysis of diverse nucleosides, yielding D-ribose 1-phosphate and the respective free bases. Can use uridine, adenosine, guanosine, cytidine, thymidine, inosine and xanthosine as substrates. Also catalyzes the reverse reactions.
     
  0.969
purA
Adenylosuccinate synthetase; Plays an important role in the de novo pathway of purine nucleotide biosynthesis. Catalyzes the first committed step in the biosynthesis of AMP from IMP; Belongs to the adenylosuccinate synthetase family.
  
 
 0.964
gmk
Guanylate kinase; Essential for recycling GMP and indirectly, cGMP.
  
  
 0.963
purH
Phosphoribosylaminoimidazolecarboxamide formyltransferase; Involved in de novo purine biosynthesis; Derived by automated computational analysis using gene prediction method: Protein Homology.
    
 0.960
adk
Adenylate kinase; Catalyzes the reversible transfer of the terminal phosphate group between ATP and AMP. Plays an important role in cellular energy homeostasis and in adenine nucleotide metabolism; Belongs to the adenylate kinase family.
 
 
 0.958
gpt
Xanthine-guanine phosphoribosyltransferase; Acts on guanine, xanthine and to a lesser extent hypoxanthine; Belongs to the purine/pyrimidine phosphoribosyltransferase family. XGPT subfamily.
   
 0.955
apt
Adenine phosphoribosyltransferase; Catalyzes a salvage reaction resulting in the formation of AMP, that is energically less costly than de novo synthesis.
   
 0.955
guaC
Guanosine 5'-monophosphate oxidoreductase; Catalyzes the irreversible NADPH-dependent deamination of GMP to IMP. It functions in the conversion of nucleobase, nucleoside and nucleotide derivatives of G to A nucleotides, and in maintaining the intracellular balance of A and G nucleotides.
    
 0.950
Your Current Organism:
Erwinia tracheiphila
NCBI taxonomy Id: 65700
Other names: ATCC 33245, Bacillus tracheiphilus, Bacterium tracheiphilus, CFBP 2355, CIP 105205, DSM 21139, E. tracheiphila, Erwinia amylovora var. tracheiphila, ICMP 5845, LMG 2707, LMG 2906, LMG:2707, LMG:2906, NCPPB 2452
Server load: low (18%) [HD]