STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
pyrIAspartate carbamoyltransferase regulatory subunit; Involved in allosteric regulation of aspartate carbamoyltransferase. (153 aa)    
Predicted Functional Partners:
pyrB
Aspartate carbamoyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the aspartate/ornithine carbamoyltransferase superfamily. ATCase family.
 0.999
carB
Carbamoyl phosphate synthase large subunit; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the CarB family.
  
 
  0.981
carA
Carbamoyl phosphate synthase small subunit; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the CarA family.
  
 
 0.967
pyrC
Dihydroorotase; Catalyzes the reversible cyclization of carbamoyl aspartate to dihydroorotate.
   
 
  0.954
ANP67374.1
Dihydroorotase; Catalyzes the reversible hydrolysis of the amide bond within dihydroorotate. This metabolic intermediate is required for the biosynthesis of pyrimidine nucleotides; Derived by automated computational analysis using gene prediction method: Protein Homology.
    
 0.922
purA_1
Adenylosuccinate synthase; Plays an important role in the de novo pathway of purine nucleotide biosynthesis. Catalyzes the first committed step in the biosynthesis of AMP from IMP; Belongs to the adenylosuccinate synthetase family.
    
 0.910
purA
Adenylosuccinate synthetase; Plays an important role in the de novo pathway of purine nucleotide biosynthesis. Catalyzes the first committed step in the biosynthesis of AMP from IMP; Belongs to the adenylosuccinate synthetase family.
    
 0.910
ANP65859.1
Ornithine carbamoyltransferase; Reversibly catalyzes the transfer of the carbamoyl group from carbamoyl phosphate (CP) to the N(epsilon) atom of ornithine (ORN) to produce L-citrulline.
 
  
  0.905
asnB
Functions in asparagine biosynthesis; converts glutamine, aspartate, ATP, and water to glutamate, asparagine, pyrophosphate and AMP; Derived by automated computational analysis using gene prediction method: Protein Homology.
    
  0.903
ANP64949.1
Aspartate 4-decarboxylase; Derived by automated computational analysis using gene prediction method: Protein Homology.
     
  0.900
Your Current Organism:
Vibrio alginolyticus
NCBI taxonomy Id: 663
Other names: ATCC 17749, Beneckea alginolytica, CAIM 516, CCUG 13445, CCUG 16315, CCUG 4989, CIP 103336, CIP 75.3, DSM 2171, IFO 15630, LMG 4409, LMG:4409, NBRC 15630, NCCB 71013, NCCB 77003, NCTC 12160, Oceanomonas alginolytica, Pseudomonas creosotensis, V. alginolyticus, Vibrio sp. PeIg0901
Server load: low (20%) [HD]