STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
nagBGlucosamine-6-phosphate deaminase; Catalyzes the reversible formation of fructose 6-phosphate from glucosamine 6-phosphate; Derived by automated computational analysis using gene prediction method: Protein Homology. (266 aa)    
Predicted Functional Partners:
nagA
N-acetylglucosamine-6-phosphate deacetylase; Catalyzes the formation of glucosamine 6-phosphate from N-acetylglucosamine 6-phosphate; Derived by automated computational analysis using gene prediction method: Protein Homology.
 0.999
glmS
Glucosamine--fructose-6-phosphate aminotransferase; Catalyzes the first step in hexosamine metabolism, converting fructose-6P into glucosamine-6P using glutamine as a nitrogen source.
  
 
 0.948
glmM
Phosphoglucosamine mutase; Catalyzes the conversion of glucosamine-6-phosphate to glucosamine-1-phosphate; Belongs to the phosphohexose mutase family.
   
 0.939
manA
Mannose-6-phosphate isomerase; Catalyzes the formation of of fructose 6-phosphate from mannose 6-phosphate; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the mannose-6-phosphate isomerase type 1 family.
     
 0.934
pgi
Glucose-6-phosphate isomerase; Functions in sugar metabolism in glycolysis and the Embden-Meyerhof pathways (EMP) and in gluconeogenesis; catalyzes reversible isomerization of glucose-6-phosphate to fructose-6-phosphate; member of PGI family; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the GPI family.
  
 0.933
KOH17466.1
Mannose-6-phosphate isomerase; Catalyzes the formation of of fructose 6-phosphate from mannose 6-phosphate; Derived by automated computational analysis using gene prediction method: Protein Homology.
     
 0.929
KOH18513.1
N-acetylglucosamine kinase; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
 
 0.925
KOH17867.1
Glucose-6-phosphate dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
  
 0.784
KOH18515.1
N,N'-diacetylchitobiose phosphorylase; Derived by automated computational analysis using gene prediction method: Protein Homology.
     
 0.687
murQ
N-acetylmuramic acid-6-phosphate etherase; Catalyzes the cleavage of the lactyl ether moiety of N-acetylmuramic acid-6-phosphate (MurNAc-6-P) to form N-acetylglucosamine-6-phosphate (GlcNAc-6-P) and lactate; involved in MurNAc dissimilation pathway; Derived by automated computational analysis using gene prediction method: Protein Homology.
     
 0.664
Your Current Organism:
Vibrio parahaemolyticus
NCBI taxonomy Id: 670
Other names: ATCC 17802, Beneckea parahaemolytica, CAIM 320, CCUG 14474, CCUG 15657, CCUG 4224, CIP 75.2, DSM 10027, IFO 12711, LMG 2850, LMG:2850, NBRC 12711, NCCB 77010, NCCB 77018, NCTC 10903, NRRL B-4167, Oceanomonas parahaemolytica, Pasteurella parahaemolytica, V. parahaemolyticus
Server load: low (28%) [HD]