STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
KUN96508.1Magnesium-transporting ATPase; Derived by automated computational analysis using gene prediction method: Protein Homology. (797 aa)    
Predicted Functional Partners:
KUN95814.1
Reductase; Derived by automated computational analysis using gene prediction method: Protein Homology.
    
 0.900
KUN95824.1
Cytochrome P450; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the cytochrome P450 family.
    
 0.900
KUO02121.1
Reductase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the prokaryotic molybdopterin-containing oxidoreductase family. NasA/NapA/NarB subfamily.
    
 0.895
atpD
ATP synthase subunit beta; Produces ATP from ADP in the presence of a proton gradient across the membrane. The catalytic sites are hosted primarily by the beta subunits.
   
 0.868
atpA
ATP synthase subunit alpha; Produces ATP from ADP in the presence of a proton gradient across the membrane. The alpha chain is a regulatory subunit.
   
 
 0.846
ppa
Inorganic pyrophosphatase; Catalyzes the hydrolysis of inorganic pyrophosphate (PPi) forming two phosphate ions.
     
 0.834
atpE
ATP synthase subunit C; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation.
   
 0.833
KUO02209.1
Endonuclease; Derived by automated computational analysis using gene prediction method: Protein Homology.
   
    0.831
atpG
ATP synthase F0F1 subunit gamma; Produces ATP from ADP in the presence of a proton gradient across the membrane. The gamma chain is believed to be important in regulating ATPase activity and the flow of protons through the CF(0) complex.
   
 0.826
atpH
ATP synthase F0F1 subunit delta; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation.
   
 0.821
Your Current Organism:
Streptomyces resistomycificus
NCBI taxonomy Id: 67356
Other names: ATCC 19804, BCRC 13755, CBS 556.68, CCRC 13755, CCRC:13755, DSM 40133, IFO 12814, ISP 5133, JCM 4409, NBRC 12814, NCIMB 9843, NRRL 2290, NRRL-ISP 5133, PCM 2296, S. resistomycificus, Streptomyces sp. USC032, UNIQEM 190
Server load: low (14%) [HD]