STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
sucDsuccinyl-CoA synthetase subunit alpha; Succinyl-CoA synthetase functions in the citric acid cycle (TCA), coupling the hydrolysis of succinyl-CoA to the synthesis of either ATP or GTP and thus represents the only step of substrate-level phosphorylation in the TCA. The alpha subunit of the enzyme binds the substrates coenzyme A and phosphate, while succinate binding and nucleotide specificity is provided by the beta subunit. (290 aa)    
Predicted Functional Partners:
sucC
succinyl-CoA synthetase subunit beta; Succinyl-CoA synthetase functions in the citric acid cycle (TCA), coupling the hydrolysis of succinyl-CoA to the synthesis of either ATP or GTP and thus represents the only step of substrate-level phosphorylation in the TCA. The beta subunit provides nucleotide specificity of the enzyme and binds the substrate succinate, while the binding sites for coenzyme A and phosphate are found in the alpha subunit.
 0.999
KMK52566.1
Part of four member fumarate reductase enzyme complex FrdABCD which catalyzes the reduction of fumarate to succinate during anaerobic respiration; FrdAB are the catalytic subcomplex consisting of a flavoprotein subunit and an iron-sulfur subunit, respectively; FrdCD are the membrane components which interact with quinone and are involved in electron transfer; the catalytic subunits are similar to succinate dehydrogenase SdhAB; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
 0.965
KMK52567.1
Fumarate reductase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the succinate dehydrogenase/fumarate reductase iron-sulfur protein family.
 
 0.955
KMK50558.1
Dihydrolipoamide succinyltransferase; E2 component of the 2-oxoglutarate dehydrogenase (OGDH) complex which catalyzes the second step in the conversion of 2- oxoglutarate to succinyl-CoA and CO(2).
  
 0.896
KMK50559.1
2-oxoglutarate dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
 
 0.883
KMK51144.1
Quinol dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
 0.878
KMK51773.1
Malic enzyme; NADP-dependent; catalyzes the oxidative decarboxylation of malate to form pyruvate; decarboxylates oxaloacetate; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
 
 0.872
KMK50854.1
Oxaloacetate decarboxylase; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
 
 0.868
KMK50807.1
Acetaldehyde dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology; In the C-terminal section; belongs to the iron-containing alcohol dehydrogenase family.
  
 0.868
gltA
Type II enzyme; in Escherichia coli this enzyme forms a trimer of dimers which is allosterically inhibited by NADH and competitively inhibited by alpha-ketoglutarate; allosteric inhibition is lost when Cys206 is chemically modified which also affects hexamer formation; forms oxaloacetate and acetyl-CoA and water from citrate and coenzyme A; functions in TCA cycle, glyoxylate cycle and respiration; enzyme from Helicobacter pylori is not inhibited by NADH; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the citrate synthase family.
  
 0.848
Your Current Organism:
Muribacter muris
NCBI taxonomy Id: 67855
Other names: ATCC 49577, Ackerman 80-443D, Actinobacillus muris, CCUG 16938, CCUG 23134, CCUG 28285 B, CIP 103439, DSM 22206, M. muris, MCCM 00197, MCCM:00197, NCTC 12432, strain 80-443D, strain HIM 728-7/8, strain HIM 733-8
Server load: low (30%) [HD]