STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
AOW87959.1Transcriptional regulator; Derived by automated computational analysis using gene prediction method: Protein Homology. (232 aa)    
Predicted Functional Partners:
rpsD
30S ribosomal protein S4; One of the primary rRNA binding proteins, it binds directly to 16S rRNA where it nucleates assembly of the body of the 30S subunit.
  
 0.999
rplJ
50S ribosomal protein L10; Forms part of the ribosomal stalk, playing a central role in the interaction of the ribosome with GTP-bound translation factors. Belongs to the universal ribosomal protein uL10 family.
  
 0.999
rpsL
Glucosyl transferase; Interacts with and stabilizes bases of the 16S rRNA that are involved in tRNA selection in the A site and with the mRNA backbone. Located at the interface of the 30S and 50S subunits, it traverses the body of the 30S subunit contacting proteins on the other side and probably holding the rRNA structure together. The combined cluster of proteins S8, S12 and S17 appears to hold together the shoulder and platform of the 30S subunit.
  
 0.999
rpsG
30S ribosomal protein S7; One of the primary rRNA binding proteins, it binds directly to 16S rRNA where it nucleates assembly of the head domain of the 30S subunit. Is located at the subunit interface close to the decoding center, probably blocks exit of the E-site tRNA; Belongs to the universal ribosomal protein uS7 family.
  
 0.999
rpsJ
30S ribosomal protein S10; Involved in the binding of tRNA to the ribosomes. Belongs to the universal ribosomal protein uS10 family.
  
 0.999
rplW
50S ribosomal protein L23; One of the early assembly proteins it binds 23S rRNA. One of the proteins that surrounds the polypeptide exit tunnel on the outside of the ribosome. Forms the main docking site for trigger factor binding to the ribosome; Belongs to the universal ribosomal protein uL23 family.
  
 0.999
rpsS
30S ribosomal protein S19; Protein S19 forms a complex with S13 that binds strongly to the 16S ribosomal RNA.
  
 0.999
rplV
50S ribosomal protein L22; The globular domain of the protein is located near the polypeptide exit tunnel on the outside of the subunit, while an extended beta-hairpin is found that lines the wall of the exit tunnel in the center of the 70S ribosome.
  
 0.999
rpsC
30S ribosomal protein S3; Binds the lower part of the 30S subunit head. Binds mRNA in the 70S ribosome, positioning it for translation; Belongs to the universal ribosomal protein uS3 family.
  
 0.999
rpsQ
30S ribosomal protein S17; One of the primary rRNA binding proteins, it binds specifically to the 5'-end of 16S ribosomal RNA.
  
 0.999
Your Current Organism:
Streptomyces pactum
NCBI taxonomy Id: 68249
Other names: ATCC 27456, BCRC 12076, CBS 461.69, CBS 734.72, CCRC 12076, CCRC:12076, DSM 40530, IFO 13433, IMET 43357, ISP 5530, JCM 4288, JCM 4809, KCTC 9165, LMG 19357, LMG:19357, NBRC 13433, NCIMB 9445, NRRL 2939, NRRL ISP-5530, NRRL-ISP 5530, S. pactum, Streptomyces pactum var. pactum, Streptomyces pactus
Server load: low (24%) [HD]