node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
EIC27873.1 | prmB | Metal_0001 | Metal_0975 | Conserved hypothetical protein YidD; Could be involved in insertion of integral membrane proteins into the membrane; Belongs to the UPF0161 family. | protein-(glutamine-N5) methyltransferase, ribosomal protein L3-specific; Specifically methylates the 50S ribosomal protein L3 on a specific glutamine residue; Belongs to the protein N5-glutamine methyltransferase family. PrmB subfamily. | 0.974 |
EIC30003.1 | aroC | Metal_2263 | Metal_0976 | Murein endopeptidase; Murein endopeptidase that cleaves the D-alanyl-meso-2,6- diamino-pimelyl amide bond that connects peptidoglycan strands. Likely plays a role in the removal of murein from the sacculus. | Chorismate synthase; Catalyzes the anti-1,4-elimination of the C-3 phosphate and the C-6 proR hydrogen from 5-enolpyruvylshikimate-3-phosphate (EPSP) to yield chorismate, which is the branch point compound that serves as the starting substrate for the three terminal pathways of aromatic amino acid biosynthesis. This reaction introduces a second double bond into the aromatic ring system. | 0.562 |
EIC30003.1 | prmB | Metal_2263 | Metal_0975 | Murein endopeptidase; Murein endopeptidase that cleaves the D-alanyl-meso-2,6- diamino-pimelyl amide bond that connects peptidoglycan strands. Likely plays a role in the removal of murein from the sacculus. | protein-(glutamine-N5) methyltransferase, ribosomal protein L3-specific; Specifically methylates the 50S ribosomal protein L3 on a specific glutamine residue; Belongs to the protein N5-glutamine methyltransferase family. PrmB subfamily. | 0.621 |
EIC30267.1 | atpE | Metal_2550 | Metal_2547 | F0F1-type ATP synthase, gamma subunit; PFAM: ATP synthase. | ATP synthase, F0 subunit c; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. | 0.999 |
EIC30267.1 | atpE-2 | Metal_2550 | Metal_3774 | F0F1-type ATP synthase, gamma subunit; PFAM: ATP synthase. | ATP synthase, F0 subunit c; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. | 0.999 |
EIC30267.1 | atpG | Metal_2550 | Metal_3770 | F0F1-type ATP synthase, gamma subunit; PFAM: ATP synthase. | ATP synthase, F1 gamma subunit; Produces ATP from ADP in the presence of a proton gradient across the membrane. The gamma chain is believed to be important in regulating ATPase activity and the flow of protons through the CF(0) complex. | 0.909 |
EIC30267.1 | atpH | Metal_2550 | Metal_3772 | F0F1-type ATP synthase, gamma subunit; PFAM: ATP synthase. | ATP synthase, F1 delta subunit; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. | 0.999 |
EIC30267.1 | prmB | Metal_2550 | Metal_0975 | F0F1-type ATP synthase, gamma subunit; PFAM: ATP synthase. | protein-(glutamine-N5) methyltransferase, ribosomal protein L3-specific; Specifically methylates the 50S ribosomal protein L3 on a specific glutamine residue; Belongs to the protein N5-glutamine methyltransferase family. PrmB subfamily. | 0.622 |
aroC | EIC30003.1 | Metal_0976 | Metal_2263 | Chorismate synthase; Catalyzes the anti-1,4-elimination of the C-3 phosphate and the C-6 proR hydrogen from 5-enolpyruvylshikimate-3-phosphate (EPSP) to yield chorismate, which is the branch point compound that serves as the starting substrate for the three terminal pathways of aromatic amino acid biosynthesis. This reaction introduces a second double bond into the aromatic ring system. | Murein endopeptidase; Murein endopeptidase that cleaves the D-alanyl-meso-2,6- diamino-pimelyl amide bond that connects peptidoglycan strands. Likely plays a role in the removal of murein from the sacculus. | 0.562 |
aroC | prmB | Metal_0976 | Metal_0975 | Chorismate synthase; Catalyzes the anti-1,4-elimination of the C-3 phosphate and the C-6 proR hydrogen from 5-enolpyruvylshikimate-3-phosphate (EPSP) to yield chorismate, which is the branch point compound that serves as the starting substrate for the three terminal pathways of aromatic amino acid biosynthesis. This reaction introduces a second double bond into the aromatic ring system. | protein-(glutamine-N5) methyltransferase, ribosomal protein L3-specific; Specifically methylates the 50S ribosomal protein L3 on a specific glutamine residue; Belongs to the protein N5-glutamine methyltransferase family. PrmB subfamily. | 0.915 |
atpE | EIC30267.1 | Metal_2547 | Metal_2550 | ATP synthase, F0 subunit c; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. | F0F1-type ATP synthase, gamma subunit; PFAM: ATP synthase. | 0.999 |
atpE | atpE-2 | Metal_2547 | Metal_3774 | ATP synthase, F0 subunit c; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. | ATP synthase, F0 subunit c; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. | 0.931 |
atpE | atpG | Metal_2547 | Metal_3770 | ATP synthase, F0 subunit c; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. | ATP synthase, F1 gamma subunit; Produces ATP from ADP in the presence of a proton gradient across the membrane. The gamma chain is believed to be important in regulating ATPase activity and the flow of protons through the CF(0) complex. | 0.998 |
atpE | atpH | Metal_2547 | Metal_3772 | ATP synthase, F0 subunit c; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. | ATP synthase, F1 delta subunit; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. | 0.999 |
atpE | prmB | Metal_2547 | Metal_0975 | ATP synthase, F0 subunit c; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. | protein-(glutamine-N5) methyltransferase, ribosomal protein L3-specific; Specifically methylates the 50S ribosomal protein L3 on a specific glutamine residue; Belongs to the protein N5-glutamine methyltransferase family. PrmB subfamily. | 0.631 |
atpE-2 | EIC30267.1 | Metal_3774 | Metal_2550 | ATP synthase, F0 subunit c; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. | F0F1-type ATP synthase, gamma subunit; PFAM: ATP synthase. | 0.999 |
atpE-2 | atpE | Metal_3774 | Metal_2547 | ATP synthase, F0 subunit c; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. | ATP synthase, F0 subunit c; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. | 0.931 |
atpE-2 | atpG | Metal_3774 | Metal_3770 | ATP synthase, F0 subunit c; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. | ATP synthase, F1 gamma subunit; Produces ATP from ADP in the presence of a proton gradient across the membrane. The gamma chain is believed to be important in regulating ATPase activity and the flow of protons through the CF(0) complex. | 0.999 |
atpE-2 | atpH | Metal_3774 | Metal_3772 | ATP synthase, F0 subunit c; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. | ATP synthase, F1 delta subunit; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. | 0.999 |
atpE-2 | prmB | Metal_3774 | Metal_0975 | ATP synthase, F0 subunit c; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. | protein-(glutamine-N5) methyltransferase, ribosomal protein L3-specific; Specifically methylates the 50S ribosomal protein L3 on a specific glutamine residue; Belongs to the protein N5-glutamine methyltransferase family. PrmB subfamily. | 0.724 |