STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
rdgCRecombination-associated protein RdgC; May be involved in recombination; Belongs to the RdgC family. (303 aa)    
Predicted Functional Partners:
ttcA
Hypothetical protein; Catalyzes the ATP-dependent 2-thiolation of cytidine in position 32 of tRNA, to form 2-thiocytidine (s(2)C32). The sulfur atoms are provided by the cysteine/cysteine desulfurase (IscS) system.
 
     0.743
rpoA
DNA-directed RNA polymerase, alpha subunit; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates.
   
   0.703
GLE_0116
Hypothetical protein.
       0.685
rpoB
DNA-directed RNA polymerase, beta subunit; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates.
    
   0.658
parC
DNA topoisomerase IV, A subunit; Topoisomerase IV is essential for chromosome segregation. It relaxes supercoiled DNA. Performs the decatenation events required during the replication of a circular DNA molecule; Belongs to the type II topoisomerase GyrA/ParC subunit family. ParC type 1 subfamily.
  
   0.557
gyrA
DNA gyrase, A subunit; A type II topoisomerase that negatively supercoils closed circular double-stranded (ds) DNA in an ATP-dependent manner to modulate DNA topology and maintain chromosomes in an underwound state. Negative supercoiling favors strand separation, and DNA replication, transcription, recombination and repair, all of which involve strand separation. Also able to catalyze the interconversion of other topological isomers of dsDNA rings, including catenanes and knotted rings. Type II topoisomerases break and join 2 DNA strands simultaneously in an ATP-dependent manner.
  
   0.509
lexA-2
LexA repressor; Represses a number of genes involved in the response to DNA damage (SOS response), including recA and lexA. In the presence of single-stranded DNA, RecA interacts with LexA causing an autocatalytic cleavage which disrupts the DNA-binding part of LexA, leading to derepression of the SOS regulon and eventually DNA repair.
      
 0.493
mreD
Rod shape-determining protein MreD; Involved in formation of the rod shape of the cell. May also contribute to regulation of formation of penicillin-binding proteins. Belongs to the MreD family.
  
     0.485
sbcB
Exodeoxyribonuclease I.
  
     0.480
rpsL
Ribosomal protein S12; Interacts with and stabilizes bases of the 16S rRNA that are involved in tRNA selection in the A site and with the mRNA backbone. Located at the interface of the 30S and 50S subunits, it traverses the body of the 30S subunit contacting proteins on the other side and probably holding the rRNA structure together. The combined cluster of proteins S8, S12 and S17 appears to hold together the shoulder and platform of the 30S subunit.
   
    0.456
Your Current Organism:
Lysobacter enzymogenes
NCBI taxonomy Id: 69
Other names: ATCC 29487, DSM 2043, L. enzymogenes, LMG 8762, LMG:8762, Lysobacter enzymogenes subsp. enzymogenes, UASM 495
Server load: medium (54%) [HD]