STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
BG55_07240Transcriptional regulator; Represses the expression of the zwf, eda, glp and gap; Derived by automated computational analysis using gene prediction method: Protein Homology. (294 aa)    
Predicted Functional Partners:
BG55_22320
PTS N-acetyl glucosamine transporter subunits IIABC; Phosphoenolpyruvate-dependent sugar phosphotransferase system; catalyzes the phosphorylation of incoming sugar substrates concomitant with their translocation across the cell membrane; IIB is phosphorylated by IIA and then transfers the phosphoryl group to the sugar; IIC forms the translocation channel; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
 
 0.893
glk
Glucokinase; Catalyzes the conversion of ATP and D-glucose to ADP and D-glucose 6-phosphate; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the bacterial glucokinase family.
   
 0.782
BG55_07250
Keto-deoxy-phosphogluconate aldolase; Catalyzes the formation of pyruvate and glyoxylate from 4-hydroxy-2-oxoglutarate; or pyruvate and D-glyceraldehyde 3-phosphate from 2-dehydro-3-deoxy-D-glyconate 6-phosphate; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
  
 0.781
BG55_16450
PTS glucose-specific subunit IIBC; Phosphoenolpyruvate-dependent sugar phosphotransferase system; catalyzes the phosphorylation of incoming sugar substrates concomitant with their translocation across the cell membrane; IIB is phosphorylated by IIA and then transfers the phosphoryl group to the sugar; IIC forms the translocation channel; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
 
 0.771
BG55_13355
PTS system trehalose(maltose)-specific transporter subunits IIBC; Phosphoenolpyruvate-dependent sugar phosphotransferase system; catalyzes the phosphorylation of incoming sugar substrates concomitant with their translocation across the cell membrane; IIB is phosphorylated by IIA and then transfers the phosphoryl group to the sugar; IIC forms the translocation channel; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
 
 0.738
BG55_07235
Pyruvate kinase; Catalyzes the formation of phosphoenolpyruvate from pyruvate; Derived by automated computational analysis using gene prediction method: Protein Homology.
    
 0.682
BG55_01895
ROK family protein; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
 
 0.607
zwf
Glucose-6-phosphate dehydrogenase; Catalyzes the oxidation of glucose 6-phosphate to 6- phosphogluconolactone.
    
 0.606
murQ
N-acetylmuramic acid-6-phosphate etherase; Specifically catalyzes the cleavage of the D-lactyl ether substituent of MurNAc 6-phosphate, producing GlcNAc 6-phosphate and D- lactate. Together with AnmK, is also required for the utilization of anhydro-N-acetylmuramic acid (anhMurNAc) either imported from the medium or derived from its own cell wall murein, and thus plays a role in cell wall recycling; Belongs to the GCKR-like family. MurNAc-6-P etherase subfamily.
 
  
 0.467
pgi
Glucose-6-phosphate isomerase; Functions in sugar metabolism in glycolysis and the Embden-Meyerhof pathways (EMP) and in gluconeogenesis; catalyzes reversible isomerization of glucose-6-phosphate to fructose-6-phosphate; member of PGI family; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the GPI family.
    
 0.451
Your Current Organism:
Erwinia mallotivora
NCBI taxonomy Id: 69222
Other names: ATCC 29573, CFBP 2503, CIP 105197, DSM 4565, E. mallotivora, ICMP 5705, LMG 2708, LMG:2708, NCPPB 2851
Server load: low (26%) [HD]