STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
BG55_13710Cysteine synthase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the cysteine synthase/cystathionine beta- synthase family. (323 aa)    
Predicted Functional Partners:
cysE
Catalyzes the O-acetylation of serine; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
 0.989
BG55_10390
Cystathionine beta-lyase; Catalyzes the formation of L-homocysteine from cystathionine; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
 0.941
BG55_05970
Catalyzes the formation of cystathionine from L-cysteine and O-succinyl-L-homoserine; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
 0.936
cysI
Sulfite reductase subunit beta; Component of the sulfite reductase complex that catalyzes the 6-electron reduction of sulfite to sulfide. This is one of several activities required for the biosynthesis of L-cysteine from sulfate. Belongs to the nitrite and sulfite reductase 4Fe-4S domain family.
  
 
 0.924
cysJ
Sulfite reductase subunit alpha; Component of the sulfite reductase complex that catalyzes the 6-electron reduction of sulfite to sulfide. This is one of several activities required for the biosynthesis of L-cysteine from sulfate. The flavoprotein component catalyzes the electron flow from NADPH -> FAD -> FMN to the hemoprotein component. Belongs to the NADPH-dependent sulphite reductase flavoprotein subunit CysJ family. In the N-terminal section; belongs to the flavodoxin family.
  
 
 0.865
luxS
S-ribosylhomocysteinase; Involved in the synthesis of autoinducer 2 (AI-2) which is secreted by bacteria and is used to communicate both the cell density and the metabolic potential of the environment. The regulation of gene expression in response to changes in cell density is called quorum sensing. Catalyzes the transformation of S-ribosylhomocysteine (RHC) to homocysteine (HC) and 4,5-dihydroxy-2,3-pentadione (DPD). Belongs to the LuxS family.
 
 
 0.829
BG55_07090
Aspartate aminotransferase; Derived by automated computational analysis using gene prediction method: Protein Homology.
    
 0.792
trpF
Indole-3-glycerol phosphate synthase; Monomeric bifunctional protein; functions in tryptophan biosynthesis pathway; phosphoribosylanthranilate is rearranged to carboxyphenylaminodeoxyribulosephosphate which is then closed to form indole-3-glycerol phosphate; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the TrpC family.
    
 0.790
sseA
3-mercaptopyruvate sulfurtransferase; Catalyzes the transfer of a sulfur ion to cyanide or to other thiol compounds; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
 
 0.781
serC
3-phosphoserine/phosphohydroxythreonine aminotransferase; Catalyzes the reversible conversion of 3- phosphohydroxypyruvate to phosphoserine and of 3-hydroxy-2-oxo-4- phosphonooxybutanoate to phosphohydroxythreonine; Belongs to the class-V pyridoxal-phosphate-dependent aminotransferase family. SerC subfamily.
  
 
 0.767
Your Current Organism:
Erwinia mallotivora
NCBI taxonomy Id: 69222
Other names: ATCC 29573, CFBP 2503, CIP 105197, DSM 4565, E. mallotivora, ICMP 5705, LMG 2708, LMG:2708, NCPPB 2851
Server load: low (20%) [HD]