node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
argS | glnS | ACT75_10325 | ACT75_10885 | arginine--tRNA ligase; Derived by automated computational analysis using gene prediction method: Protein Homology. | glutamine--tRNA ligase; Catalyzes a two-step reaction, first charging a glutamine molecule by linking its carboxyl group to the alpha-phosphate of ATP, followed by transfer of the aminoacyl-adenylate to its tRNA; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.790 |
argS | gltX | ACT75_10325 | ACT75_08705 | arginine--tRNA ligase; Derived by automated computational analysis using gene prediction method: Protein Homology. | glutamyl-Q tRNA(Asp) ligase; Catalyzes the attachment of glutamate to tRNA(Glu) in a two- step reaction: glutamate is first activated by ATP to form Glu-AMP and then transferred to the acceptor end of tRNA(Glu); Belongs to the class-I aminoacyl-tRNA synthetase family. Glutamate--tRNA ligase type 1 subfamily. | 0.878 |
argS | guaA | ACT75_10325 | ACT75_01940 | arginine--tRNA ligase; Derived by automated computational analysis using gene prediction method: Protein Homology. | GMP synthetase; Catalyzes the synthesis of GMP from XMP. | 0.956 |
argS | ileS | ACT75_10325 | ACT75_03585 | arginine--tRNA ligase; Derived by automated computational analysis using gene prediction method: Protein Homology. | isoleucine--tRNA ligase; Catalyzes the attachment of isoleucine to tRNA(Ile). As IleRS can inadvertently accommodate and process structurally similar amino acids such as valine, to avoid such errors it has two additional distinct tRNA(Ile)-dependent editing activities. One activity is designated as 'pretransfer' editing and involves the hydrolysis of activated Val-AMP. The other activity is designated 'posttransfer' editing and involves deacylation of mischarged Val-tRNA(Ile). Belongs to the class-I aminoacyl-tRNA synthetase family. IleS type 1 subfamily. | 0.875 |
argS | lysS | ACT75_10325 | ACT75_01100 | arginine--tRNA ligase; Derived by automated computational analysis using gene prediction method: Protein Homology. | lysine--tRNA ligase; Class II; LysRS2; catalyzes a two-step reaction, first charging a lysine molecule by linking its carboxyl group to the alpha-phosphate of ATP, followed by transfer of the aminoacyl-adenylate to its tRNA; in Methanosarcina barkeri, LysRS2 charges both tRNA molecules for lysine that exist in this organism and in addition can charge the tRNAPyl with lysine in the presence of LysRS1; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the class-II aminoacyl-tRNA synthetase family. | 0.804 |
argS | metG | ACT75_10325 | ACT75_09140 | arginine--tRNA ligase; Derived by automated computational analysis using gene prediction method: Protein Homology. | methionine--tRNA ligase; Is required not only for elongation of protein synthesis but also for the initiation of all mRNA translation through initiator tRNA(fMet) aminoacylation. | 0.880 |
argS | pheT | ACT75_10325 | ACT75_11495 | arginine--tRNA ligase; Derived by automated computational analysis using gene prediction method: Protein Homology. | phenylalanine--tRNA ligase subunit beta; Catalyzes a two-step reaction, first charging a phenylalanine molecule by linking its carboxyl group to the alpha-phosphate of ATP, followed by transfer of the aminoacyl-adenylate to its tRNA; forms a tetramer of alpha(2)beta(2); binds two magnesium ions per tetramer; type 2 subfamily; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the phenylalanyl-tRNA synthetase beta subunit family. Type 1 subfamily. | 0.820 |
argS | proS | ACT75_10325 | ACT75_04550 | arginine--tRNA ligase; Derived by automated computational analysis using gene prediction method: Protein Homology. | proline--tRNA ligase; Catalyzes the attachment of proline to tRNA(Pro) in a two- step reaction: proline is first activated by ATP to form Pro-AMP and then transferred to the acceptor end of tRNA(Pro). As ProRS can inadvertently accommodate and process non-cognate amino acids such as alanine and cysteine, to avoid such errors it has two additional distinct editing activities against alanine. One activity is designated as 'pretransfer' editing and involves the tRNA(Pro)-independent hydrolysis of activated Ala-AMP. The other activity is designated 'posttransfer' editing and involves deacy [...] | 0.872 |
atpA | gltX | ACT75_06100 | ACT75_08705 | ATP synthase subunit alpha; Produces ATP from ADP in the presence of a proton gradient across the membrane. The alpha chain is a regulatory subunit. | glutamyl-Q tRNA(Asp) ligase; Catalyzes the attachment of glutamate to tRNA(Glu) in a two- step reaction: glutamate is first activated by ATP to form Glu-AMP and then transferred to the acceptor end of tRNA(Glu); Belongs to the class-I aminoacyl-tRNA synthetase family. Glutamate--tRNA ligase type 1 subfamily. | 0.487 |
atpA | guaA | ACT75_06100 | ACT75_01940 | ATP synthase subunit alpha; Produces ATP from ADP in the presence of a proton gradient across the membrane. The alpha chain is a regulatory subunit. | GMP synthetase; Catalyzes the synthesis of GMP from XMP. | 0.587 |
atpA | lysS | ACT75_06100 | ACT75_01100 | ATP synthase subunit alpha; Produces ATP from ADP in the presence of a proton gradient across the membrane. The alpha chain is a regulatory subunit. | lysine--tRNA ligase; Class II; LysRS2; catalyzes a two-step reaction, first charging a lysine molecule by linking its carboxyl group to the alpha-phosphate of ATP, followed by transfer of the aminoacyl-adenylate to its tRNA; in Methanosarcina barkeri, LysRS2 charges both tRNA molecules for lysine that exist in this organism and in addition can charge the tRNAPyl with lysine in the presence of LysRS1; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the class-II aminoacyl-tRNA synthetase family. | 0.759 |
atpA | metG | ACT75_06100 | ACT75_09140 | ATP synthase subunit alpha; Produces ATP from ADP in the presence of a proton gradient across the membrane. The alpha chain is a regulatory subunit. | methionine--tRNA ligase; Is required not only for elongation of protein synthesis but also for the initiation of all mRNA translation through initiator tRNA(fMet) aminoacylation. | 0.455 |
atpA | pheT | ACT75_06100 | ACT75_11495 | ATP synthase subunit alpha; Produces ATP from ADP in the presence of a proton gradient across the membrane. The alpha chain is a regulatory subunit. | phenylalanine--tRNA ligase subunit beta; Catalyzes a two-step reaction, first charging a phenylalanine molecule by linking its carboxyl group to the alpha-phosphate of ATP, followed by transfer of the aminoacyl-adenylate to its tRNA; forms a tetramer of alpha(2)beta(2); binds two magnesium ions per tetramer; type 2 subfamily; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the phenylalanyl-tRNA synthetase beta subunit family. Type 1 subfamily. | 0.480 |
glnS | argS | ACT75_10885 | ACT75_10325 | glutamine--tRNA ligase; Catalyzes a two-step reaction, first charging a glutamine molecule by linking its carboxyl group to the alpha-phosphate of ATP, followed by transfer of the aminoacyl-adenylate to its tRNA; Derived by automated computational analysis using gene prediction method: Protein Homology. | arginine--tRNA ligase; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.790 |
glnS | guaA | ACT75_10885 | ACT75_01940 | glutamine--tRNA ligase; Catalyzes a two-step reaction, first charging a glutamine molecule by linking its carboxyl group to the alpha-phosphate of ATP, followed by transfer of the aminoacyl-adenylate to its tRNA; Derived by automated computational analysis using gene prediction method: Protein Homology. | GMP synthetase; Catalyzes the synthesis of GMP from XMP. | 0.686 |
glnS | ileS | ACT75_10885 | ACT75_03585 | glutamine--tRNA ligase; Catalyzes a two-step reaction, first charging a glutamine molecule by linking its carboxyl group to the alpha-phosphate of ATP, followed by transfer of the aminoacyl-adenylate to its tRNA; Derived by automated computational analysis using gene prediction method: Protein Homology. | isoleucine--tRNA ligase; Catalyzes the attachment of isoleucine to tRNA(Ile). As IleRS can inadvertently accommodate and process structurally similar amino acids such as valine, to avoid such errors it has two additional distinct tRNA(Ile)-dependent editing activities. One activity is designated as 'pretransfer' editing and involves the hydrolysis of activated Val-AMP. The other activity is designated 'posttransfer' editing and involves deacylation of mischarged Val-tRNA(Ile). Belongs to the class-I aminoacyl-tRNA synthetase family. IleS type 1 subfamily. | 0.819 |
glnS | lysS | ACT75_10885 | ACT75_01100 | glutamine--tRNA ligase; Catalyzes a two-step reaction, first charging a glutamine molecule by linking its carboxyl group to the alpha-phosphate of ATP, followed by transfer of the aminoacyl-adenylate to its tRNA; Derived by automated computational analysis using gene prediction method: Protein Homology. | lysine--tRNA ligase; Class II; LysRS2; catalyzes a two-step reaction, first charging a lysine molecule by linking its carboxyl group to the alpha-phosphate of ATP, followed by transfer of the aminoacyl-adenylate to its tRNA; in Methanosarcina barkeri, LysRS2 charges both tRNA molecules for lysine that exist in this organism and in addition can charge the tRNAPyl with lysine in the presence of LysRS1; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the class-II aminoacyl-tRNA synthetase family. | 0.803 |
glnS | metG | ACT75_10885 | ACT75_09140 | glutamine--tRNA ligase; Catalyzes a two-step reaction, first charging a glutamine molecule by linking its carboxyl group to the alpha-phosphate of ATP, followed by transfer of the aminoacyl-adenylate to its tRNA; Derived by automated computational analysis using gene prediction method: Protein Homology. | methionine--tRNA ligase; Is required not only for elongation of protein synthesis but also for the initiation of all mRNA translation through initiator tRNA(fMet) aminoacylation. | 0.865 |
glnS | pheT | ACT75_10885 | ACT75_11495 | glutamine--tRNA ligase; Catalyzes a two-step reaction, first charging a glutamine molecule by linking its carboxyl group to the alpha-phosphate of ATP, followed by transfer of the aminoacyl-adenylate to its tRNA; Derived by automated computational analysis using gene prediction method: Protein Homology. | phenylalanine--tRNA ligase subunit beta; Catalyzes a two-step reaction, first charging a phenylalanine molecule by linking its carboxyl group to the alpha-phosphate of ATP, followed by transfer of the aminoacyl-adenylate to its tRNA; forms a tetramer of alpha(2)beta(2); binds two magnesium ions per tetramer; type 2 subfamily; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the phenylalanyl-tRNA synthetase beta subunit family. Type 1 subfamily. | 0.717 |
glnS | proS | ACT75_10885 | ACT75_04550 | glutamine--tRNA ligase; Catalyzes a two-step reaction, first charging a glutamine molecule by linking its carboxyl group to the alpha-phosphate of ATP, followed by transfer of the aminoacyl-adenylate to its tRNA; Derived by automated computational analysis using gene prediction method: Protein Homology. | proline--tRNA ligase; Catalyzes the attachment of proline to tRNA(Pro) in a two- step reaction: proline is first activated by ATP to form Pro-AMP and then transferred to the acceptor end of tRNA(Pro). As ProRS can inadvertently accommodate and process non-cognate amino acids such as alanine and cysteine, to avoid such errors it has two additional distinct editing activities against alanine. One activity is designated as 'pretransfer' editing and involves the tRNA(Pro)-independent hydrolysis of activated Ala-AMP. The other activity is designated 'posttransfer' editing and involves deacy [...] | 0.809 |